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There are two ways of interacting with 
VMD

Graphical widgets: clicking and interacting with 
graphical assistants

The TK console: A programmable interface to an 
interpreted language called tcl/tk.

If installed and started with python support, the 
interface has a python/tk-inter interpreter (python 2 
only).
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In this tutorial series:
 The use of tcl/tk commands in VMD will be 

revised
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SOME NOTES ON THIS PRESENTATION:

## This is a the slide title
# THIS IS A GENERAL COMMENT

%THIS IS A COMMAND IN VMD-TK-CONSOLE

$ THIS IS A COMMAND IN A BASH TERMINAL

> THIS IS ALSO A COMMAND IN A TERMINAL
# This is a secondary comment
% this is a command in a tk-console... again
$ this is a command in a terminal,  yet again
> this is a command in a terminal, once more

► this is a note, or the computers response

# sizes and colors change emphasis, NOT meaning
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#  IMPORTANT SYMBOLS IN THE PRESENTATION 

# USE OF SOME KEY'S IS SHOW AS FOLLOWS:

$  ⏎  or ENTR means press enter

␛  press ESCAPE key

$ ⇪  CTRL ⌥  are composed key usually press with some other, 
for example: CTRLⒸ  means presing control an C keys 
toghether

# ←↑↓→ press left, up, down & right arrow key, respectively

# FN① indicates pressing the funtion 1 key
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# Let us start. Open a terminal ...

> cd $HOME⏎
> mkdir session2⏎
> cd session2⏎
# Now, we need some file 

to process...
# # Now we are on a folder 

named session2
# Let us proceed to download 

some pdb files
# from:

# on windows, simply open 
VMD and go to 
# extensions => Tk console

depa.fquim.unam.mx/proteinas/mdcb/model/data/PDBfiles4examples.zip

http://depa.fquim.unam.mx/proteinas/mdcb/model/data/PDBfiles4examples.zip
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# Open a new terminal

> cd $HOME/session2⏎
> vmd⏎
> vmd> menu tkcon on⏎
# the tk/console appears... 

Click and write here ...

          
         > vmd|
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ON TCL/TK
# tcl/tk is an interpreted computer language

# documentation at:   www.tcl.tk/doc/
# It is a POSITIONAL language, meaning: 
# commands (CMD) are followed by arguments (ARG)
# Order is strict, if input is WRONG, so will be the outcome
# It has a quick built-in HELP

> mol⏎
► usage: mol <command> [args...]
► Molecules and Data: ...
► ....
► See also 

> molinfo⏎

https://www.tcl.tk/doc/


 
®FQ, UNAM, derechos reservados

#More on VMD-tcl/tk
# Tcl/Tk in VMDin VMD has:

 “general commands” & “mol commands”
# examples of general commands
% expr "2+2^2"⏎

► 6
% set yo "Rogelio"⏎

► Rogelio
% puts "hola mundo, me llamo $yo"⏎

► hola mundo, me llamo Rogelio
% puts {hola mundo, me llamo $yo}⏎

► hola mundo, me llamo $yo

# EXPLANATION:
# Strings in quotes are scanned and substituted, before passing to the command
# Variables like "yo" contain data and $yo points to its content:  "yo Rogelio"➾
# the command set  takes a variable name, 1st arg and fils it with content

creates "yo" and fills it

makes the calculation

tcl answer

What?
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# summary

# commands in tcl have the form:

%CMD arg➊ arg➋ arg➌ …⏎

# the next CMD is not equivalent, because or ARG order

%CMD arg➌ arg➊ arg➋ …⏎

# NOTE: some comands may accept flags, example:
% puts -nonewline "Hola mundo"⏎
# Usualy, the flag is optional



 
®FQ, UNAM, derechos reservados

# Variables
# Any name can be a variable, except for "reserved words"

# Reserved words are those predefined: puts, set, etc…

# their content can be a string or a list. Numbers are strings

# list elements can be strings or a list, so lists can be nested

# variable can be arrays with one, two or more indexes:

# var(0), var (1), etc.

# var(0,0), var(0,1)

# indexes can be alfanumeric

# var(a), var(b), etc
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examples

% set me “free” # me contains “free” as string
% set letras { ax by cz } # letras constains a list of strings
% puts $letras
> ax by cz
% lindex $letras 2    # retrieves the 3rth element of the list
> cz
% lappend letras {$letras} # adds to string $letras at “letras” end
% puts $letras
> ax by cz $letras
% lappend letras $letras #duplicates “letras” content
> ax by cz $letras ax by cz $letras
% foreach itm $letras { puts $itm} # runs over the list and prints
> ax
> by

...
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more examples

% set nums { 12 + 16 + 28 +  45} # nums is a list strings
% expr $nums
> 101     # now explain the result!
% set arry(0) 25
% set arry(1) 100
% puts $arry
> can't read "arry": variable is array
# Arrays are indexed blocks of strings, but the index does not have to 

be numeric.
% set arry(a) “abba”
% puts “ARRY: $arry(0), $arry(1), $arry(a)”
> ARRY: 25, 100, abba   
% foreach itm $arry {puts $itm}
> can't read "arry": variable is array  # but lists cannot be run like 

lists
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# More on VMD-tcl/tk

# Commands can be nested using [ ]
% puts "hola mundo, son las [clock format [clock seconds] -format 

{%H:%M}]"⏎

► hola mundo, son las 17:20

# EXPLANATION:
# (1) The hour is determined in ms, (2) then replaces the inner [cmd ⓐ ⓑ ⓒ…]
# (3) It is formated according to the optional flag -format {%H:%M}, meaning  hh:mm
        # The result replaces the outer [cmd ⓐ ⓑ ⓒ…] and 
(4) then the line is executes, i.e. writes a string

da formato a la hora

contesta la hora del día en s

escribe

¿y esto?
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# NOW LET'S GO  BANANAS (monkey business)
# make sure you are in the right folder

% pwd # (same CMD as in bash)
► /home/sica/session2

# If you are out of place, move into folder where your pdb files are:
% cd “~/Documentos/session2”
% mol new " .pdb"⚀⚀⚀⚀    # we loaded a file in memory⏎

► 0
# (here  is the code of a pdb file of your choice)⚀⚀⚀⚀
# "0" is the "molid" i.e. a number given to your molecule
% mol new " .pdb"⚁⚁⚁⚁ ⏎ # a second molecule is loaded
% mol new " .pdb"⚂⚂⚂⚂ ⏎ # a third molecule is loaded
# molinfo list  # info about the molecul⏎ e

► 0 1 2

%  mol delete 1
% molinfo list # ¿What’s going on?—explain the result



 
®FQ, UNAM, derechos reservados

# The active molecule
# Only one molecule has active focus at any time
% molinfo top⏎

► 2
# "molinfo top" tell us the molid of the ACTIVE molecule
# many command act on this molecule by default
# you can type top insted of its number.
# we can change the ACTIVE molecule with 
# mol top N  ⏎ # N is any mol-ID integer
% mol top [lindex [ molinfo list ] 1 ]⏎

returns a list of loaded molecules

reads a list and returns element 0

changes the ACTIVE molecule

# Explanation# Explanation
# T# The most inner [] is replaced with a list ofIDs of loaded moleculeshe most inner [] is replaced with a list ofIDs of loaded molecules
# # lindexlindex examines the list, and returns the element Nº 2 (the second) examines the list, and returns the element Nº 2 (the second)
# "mol top" makes "ACTIVE" that particular molecule# "mol top" makes "ACTIVE" that particular molecule

¿Qué pasa con el comando “mol top 1”?
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# more loading

# VMD number molecules without reusing numbers
# in the graphics window, only two loaded "mols" are shown
% mol top 0 # la molécula activa es ahora la cero
% mol addfile " .pdb"⚀⚀⚀⚀  #añadimos un pdb sobre si mismo⏎
% molinfo top get numframes
# ahora VMD tiene el doble de copias de la molécula dentro del mismo 

espacio de memoria.
#
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# ATOMSELECT COMMAND!!
# atomselect creates a command with subcommands 

# these act on atoms chosen by the second argument (string)
# the molid used for the selection is the first argument

% set allprot [ atomselect top "protein" ]⏎

% set allelse [ atomselect top "not protein" ]⏎
# The setset command is used to retain the name of the new CMD
# "$allprot" and "$allelse" will call those commands

which atoms?

which molid?

where the result is stored

# Now $allprot$allprot is a command that acts on the protein, 
# while $allelse$allelse acts on the "non-proteianeceous" atoms
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# ATOMSELECT COMMAND!!

# $allprot and $allelse  commands have 
subcommands⏎

%$allprot get {beta} # lists B factors for "protein" atoms
% $allprot set {beta} 1.0⏎ # set protein B factors  to 1.0
% $allelse set {beta} 3.0⏎ # set other B factors  to 3.0
% set mybb [atomselect top "(name H N CA CO O OXT) and (protein)" ]⏎
% $mybb get {resid name}⏎
# VMD lists the BB atoms by residue number and type
# as a list of lists (each element is a list of properties).

► { {ele00 ele01 } { ele10 ele 11} ... }



 
®FQ, UNAM, derechos reservados

#We can now save atoms on a selection
%$mybb writepdb "truebb.pdb"

% $mybb set beta "8.0"⏎
% $mybb writepdb "betamod.pdb"⏎
# we have store two BB atom sets with different B-factors
# Let us see the result
% mol selection "all"⏎
% mol representation licorice 0.3 90 90⏎
% mol color beta⏎
% mol material "EdgyShiny"⏎
% mol delrep top 0⏎
% mol addrep top⏎
# see the result in the OpenGL display

this acts on TOP and is for graphics

how are atoms drawn?

how to paint them?

what texture to apply?

delete representation &

add a new representation
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#We can now save atoms on a selection

# $mybb is a command with subcommands, acting on selected atoms:
% $mybb⏎

# usage: <atomselection> <command> [args...]
# Commands for manipulating atomselection metadata:
#   frame [new frame value]      -- get/set frame
#   molid|molindex      -- get selection's molecule id
#   text                           -- get selection's text
#   delete                       -- delete atomselection (to free memory)
#   global                       -- move atomselection to global scope
#   update                       -- recalculate selection
# Commands for getting/setting attributes:
#   num                          -- number of atoms
#   list                         -- get atom indices
#   get|get <list of attributes>     -- same as 'atomselect keywords'
#   getbonds | setbonds <bondlists>   -- get (list) or set bonded atoms
#   getbondorders | setbondsorders <bondlists> -- get or set list of bond orders
#   getbondtypes|setbondtypes   <bondlists>  -- get or set list of bond types
#   moveto|moveby <3 vector>     -- change atomic coordinates
#   lmoveto|lmoveby <x> <y> <z>
#   move <4x4 transforamtion matrix>
# Commands for writing to a f ile:
#   writepdb <f ilename>    -- write sel to PDB f ile
#   writeXXX <f ilename>  -- write sel to XXX f ile (if XXX is a known format)
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# change the environment of the representation

% display backgroundgradient 1⏎
% display resetview⏎
# the changes allowed us to color the sidechains, backbone
# and heteroatoms with different colors
# we can also encode information in these fields
# In addition to PDB fields, VMD has three user fields
# USER1, USER2 and USER3
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# Let us do aggressive changes to molecular information

% $mybb get {resname}⏎
% $mybb set {resname} {GLY}⏎
# Now all backbone atoms are labelled as GLY, i.e.
# sequence information is lost for these atoms
% $mypdb writepdb "naked_John_Doe.pdb"⏎
# the resulting PDB file is a naked BB with no identity
% quit⏎

> gedit "naked_John_Doe.pdb"

# How can you find those things that have changed?



 
®FQ, UNAM, derechos reservados

# VMD commands can be in a file and called as scripts# VMD commands can be in a file and called as scripts

# Find out where is vmd program and edit script
> which vmd⏎ # usually /usr/local/bin/vmd
> gedit pdb2polyAA⏎

????? write here the line that starts a BASH script!!????? write here the line that starts a BASH script!!
#Comment to hide BASH call, it must end with \⏎
exec /usr/local/bin/vmd -dispdev text -e "$0" -args ${1+"$@"}⏎

if { [llength $argv] < 3 } { puts "error: missing arguments"; quit}⏎
mol new⏎
mol addf ile [lindex $argv 0]⏎ 

# argv stores the arguments added at the command line
# we shall need three arguments 0:input.pdb 1:AAA 2:output.pdb

set protbb [atomselect top "(type H N CA C CO O OXT ) and ( protein )" ]⏎
set newaa  [lindex $argv 1]⏎
$protbb set { resname}  $newaa⏎
$protbb writepdb [lindex $argv 2]⏎
quit⏎
# SAVE and exit
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# let us run it

# give it execution permission

$ chmod 755 pdb2polyAA

$ ./pdb2polyAA myfile.pdb ALA allala.pdb
# Now you can make several instances of the pdb_bb
# with different monotonous aa sequences (all wrong)
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¿Can we fix the protein data?

...
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Using Rosetta design in Fixed backbone mode

# Roseta design module is named fixbb.xxxxxxxx
# xxxxxx is the compilation form usually linuxgccrelease

# to called we can use a flags file or give options in the 
command line

# in barracuda you need to load the module "rosetta/??" 

# in other systems you need to set up the environment 
as requested in "rosetta instalation instructions"

# ROSETTA3_DB environment variable sould be set and 
point to rosetta database forlder in the rosetta 
instalation folder.



 
®FQ, UNAM, derechos reservados

Setting up resfile input
# we shall need a rosetta "resfile" to indicate how fixbb is 

going to redesign the structure.
# In this case we need to instruct the software to rebuild all the 

positions with complete freedom of choice:
# i.e. put any compatible aminoacid residue at each one of the 

positions of the protein chain. The resfile should look like this:
_________________
ALLAA                                             
                                                  
start                           
–––––––––––––––––                  

# this is a very simple instructions file. ALLAA means that any AA 
choise is fine (as long as it fits well into the protein backbone).
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Set up flags file
# the minimal "flags" file should be:

-l pdb4rbld.lst                                   
-resfile r3_4XTB_frkA.res                               
-nstruct 5                                       

# this meand do the reconstruction 5 times

# Here we need to list all pdb files to rebuild in the file 
pdb4rbld, this can be quickly done using:

$ ls -1 *_frk???.pdb > pdb4rbld.lst⏎
# here we assume the files were named as xxxx_frkAaa.pdb, 

xxxx_frkAab.pdb and so on
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running Rosetta is now simple

> fixbb.xxxxxxxx @flags > run.log 2>&1 &⏎
# when the run is finished you should find many new 

pdbfiles ending in:
 _0001.pdb _0002.pdb ... etc.

# Now what should we do with these?
you could see them in vmd with:

%for each npdb [glob "*.pdb" ] {mol new $npdb} ⏎

# OJO:  "2>&1"  IS ONE WORD, with NO SPACES in it.
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Hmmer Search

# extract all fasta sequences form pdb files

$ pdb2fasta *_0???.pdb > xxxx_Xrd.seq⏎
# Next create a hmmer estatistical device

$ hmmbuild xxxx_Xrd.hmm  xxxx_Xrd.seq⏎
# Search the sequence database:

$ hmmsearch xxxx_Xrd.hmm 
/home/dbr/uniprot_sprot.fasta > xxxx_Xrd.srch_uniprot 
2>&1 &⏎

$ Now we need to see the results in 
xxxx_Xrd.srch_uniprot



 
®FQ, UNAM, derechos reservados

Results

Headings, HMM model name (query), 
target sequences, etc

List of meaningfull hits (above threshold)

The smaller the E-value, the higher statistical significance
Score is a ratio of Log(Probability HMMmodel )/Log(Probability random model)

bias should be small
this is different only if your match is discontinuos

Alignment section

conicidences
DB sequence

HMMer device
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Pay attention to:
# The sequence of interest should be in the top hits of 

HMMer

# The E-value should be small, REALLY SMALL

# The score should be at least 0.3  length of your ❌

sequence (sqL), i.e.for a 330 aa protein: Score > 99. PDB 
data give an average Score of 0.6  sqL. Rosetta GOOD ❌

predictions give a Score of 0.99  sqL. Be suspicious if ❌

value is too high.

# the alignment should be in frame start and end aminoacid 
numbers should match (correct the numbers if you 
truncated the sequence when modeling)

# There should be NO GAPS in your alignment!
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