VMD hands on: Structural file manipulation

Rogelio Rodríguez-Sotres, Bioquímica, FQ, UNAM. 2022

There are two ways of interacting with VMD

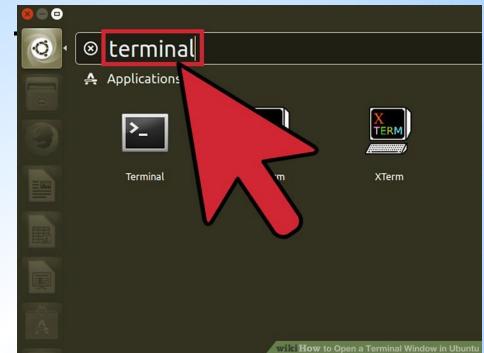
- Graphical widgets: clicking and interacting with graphical assistants
- The TK console: A programmable interface to an interpreted language called tcl/tk.
- If installed and started with python support, the interface has a python/tk-inter interpreter (python 2 only).

In this tutorial series:

The use of tcl/tk commands in VMD will be revised

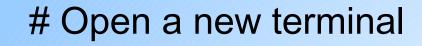
SOME NOTES ON THIS PRESENTATION:

- ## This is a the slide title
- **#** THIS IS A GENERAL COMMENT
- %THIS IS A COMMAND IN VMD-TK-CONSOLE
- **\$** THIS IS A COMMAND IN A BASH TERMINAL
- > THIS IS ALSO A COMMAND IN A TERMINAL
 - # This is a secondary comment
 - % this is a command in a tk-console... again
 - \$ this is a command in a terminal, yet again
 - > this is a command in a terminal, once more
 - this is a note, or the computers response
- **#** sizes and colors change emphasis, NOT meaning

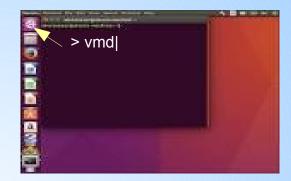

IMPORTANT SYMBOLS IN THE PRESENTATION

USE OF SOME KEY'S IS SHOW AS FOLLOWS:

- \bigcirc or $\stackrel{\text{ENTR}}{\smile}$ means press enter
 - **ESC** press ESCAPE key
- \$ ☆ CTRL ∑ are composed key usually press with some other, for example: CTRL© means presing control an C keys toghether
- # $\leftarrow \uparrow \downarrow \rightarrow$ press left, up, down & right arrow key, respectively
- $\# \frac{FN(1)}{FN(1)}$ indicates pressing the function 1 key


Let us start. Open a terminal

- > cd \$HOME
- > mkdir session2
- > cd session2<mark>↩</mark>
- # Now, we need some file to process...
 - # # Now we are on a folder named session2
 - # Let us proceed to download some pdb files
 - **#** from:

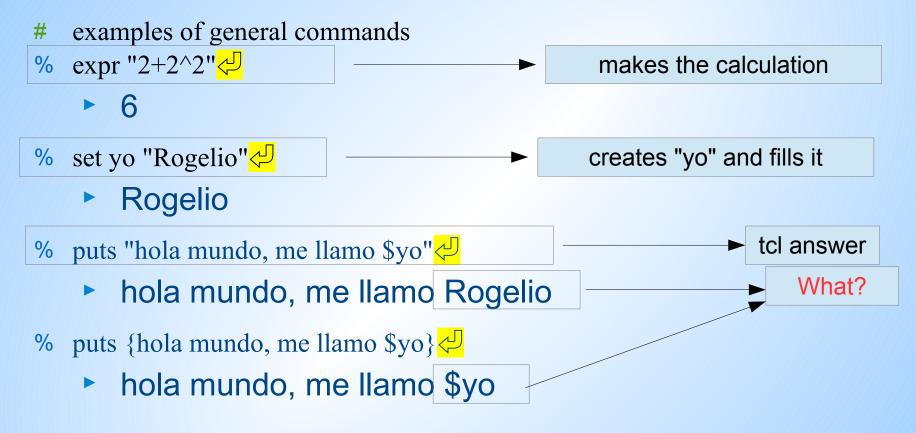

on windows, simply open
VMD and go to
extensions => Tk console

depa.fquim.unam.mx/proteinas/mdcb/model/data/PDBfiles4examples.zip

- > cd \$HOME/session2<mark>신</mark> > vmd<mark>신</mark>
- > vmd> menu tkcon on
- # the tk/console appears...

ON TCL/TK

tcl/tk is an interpreted computer language


- # documentation at: www.tcl.tk/doc/
- # It is a POSITIONAL language, meaning:
- *#* commands (CMD) are followed by arguments (ARG)
- **#** Order is strict, if input is WRONG, so will be the outcome
- # It has a quick built-in HELP
- > mol<mark>≁</mark>
 - usage: mol <command> [args...]
 - Molecules and Data: ...
 - ►
 - See also

> molinfo<mark>↓</mark>

#More on VMD-tcl/tk

Tcl/Tk in VMD has:

"general commands" & "mol commands"

EXPLANATION:

Strings in quotes are scanned and substituted, before passing to the command

Variables like "**yo**" contain data and \$yo points to its content: "yo⇒Rogelio" # the command **set** takes a variable name, 1st arg and fils it with content

summary

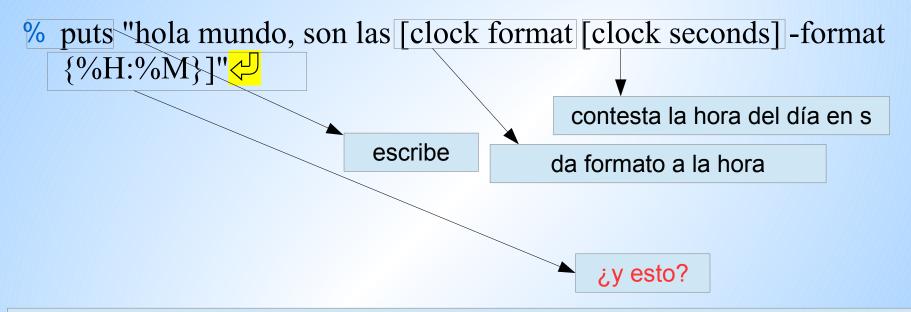
- **#** commands in tcl have the form:
- %CMD arg[●] arg[●] arg[●]<mark>↓</mark>
- # the next CMD is not equivalent, because or ARG order
- %CMD arg[®] arg[®] arg[®] … <mark>↓</mark>
 - # NOTE: some comands may accept flags, example:
 - % puts -nonewline "Hola mundo" →
 - # Usualy, the flag is optional

Variables

- # Any name can be a variable, except for "reserved words"
- **#** Reserved words are those predefined: puts, set, etc...
- # their content can be a string or a list. Numbers are strings
- # list elements can be strings or a list, so lists can be nested
- # variable can be arrays with one, two or more indexes:
- # var(0), var (1), etc.
- # var(0,0), var(0,1)
- # indexes can be alfanumeric
- # var(a), var(b), etc

examples

- % set me "free" # me contains "free" as string
- % set letras { ax by cz } # letras constains a list of strings
- % puts \$letras
- > ax by cz
- % lindex \$letras 2 # retrieves the 3^{rth} element of the list
- > cz
- % lappend letras {\$letras} # adds to string \$letras at "letras" end
- % puts \$letras
- > ax by cz \$letras
- % lappend letras \$letras #duplicates "letras" content
- > ax by cz \$letras ax by cz \$letras
- % foreach itm \$letras { puts \$itm} # runs over the list and prints
- > ax
- > by


. . .

more examples

- % set nums { 12 + 16 + 28 + 45 } # nums is a list strings
- % expr \$nums
- > 101 # now explain the result!
- % set arry(0) 25
- % set arry(1) 100
- % puts \$arry
- > can't read "arry": variable is array
- # Arrays are indexed blocks of strings, but the index does not have to be numeric.
- % set arry(a) "abba"
- % puts "ARRY: \$arry(0), \$arry(1), \$arry(a)"
- > ARRY: 25, 100, abba
- % foreach itm \$arry {puts \$itm}
- > can't read "arry": variable is array # but lists cannot be run like lists

More on VMD-tcl/tk

Commands can be nested using []

EXPLANATION:

- # (1) The hour is determined in ms, (2) then replaces the inner [cmd (a) (b) (\odot ...]
- # (3) It is formated according to the optional flag -format {%H:%M}, meaning hh:mm
 - # The result replaces the outer [cmd @ b c...] and
- (4) then the line is executes, *i.e. writes a string*

hola mundo, son las 17:20

NOW LET'S GO BANANAS (monkey business) # make sure you are in the right folder

- % pwd # (same CMD as in bash)
 - /home/sica/session2
- *#* If you are out of place, move into folder where your pdb files are:
- % cd "~/Documentos/session2"
- % mol new "⊡⊡⊡⊡.pdb" 🖓 # we loaded a file in memory

• 0

- # (here DDDD is the code of a pdb file of your choice)
- # "0" is the "molid" *i.e.* a number given to your molecule

- # molinfo list 🖓 # info about the molecule

• 012

- % mol delete 1
- % molinfo list # ¿What's going on?—explain the result

The active molecule

Only one molecule has active focus at any time
% molinfo top

▶ 2

- # "molinfo top" tell us the molid of the ACTIVE molecule
- # many command act on this molecule by default
- *#* you can type top insted of its number.
- *#* we can change the ACTIVE molecule with
- # mol top N<^J # N is any mol-ID integer

reads a list and returns element 0

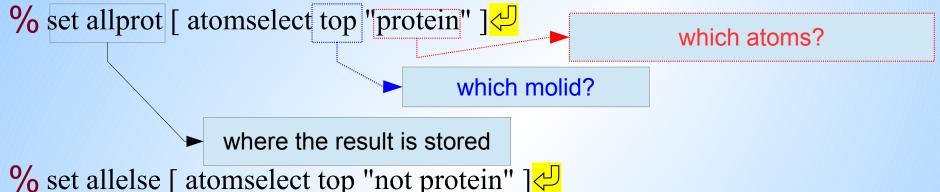
returns a list of loaded molecules

changes the ACTIVE molecule

Explanation

The most inner [] is replaced with a list ofIDs of loaded molecules
lindex examines the list, and returns the element N° 2 (the second)
"mol top" makes "ACTIVE" that particular molecule

¿Qué pasa con el comando "mol top 1"?


more loading

- **#** VMD number molecules without reusing numbers
- *#* in the graphics window, only two loaded "mols" are shown
- % mol top 0 # la molécula activa es ahora la cero
- % mol addfile "⊡⊡⊡⊡.pdb" 🖑 #añadimos un pdb sobre si mismo
- % molinfo top get numframes
- # ahora VMD tiene el doble de copias de la molécula dentro del mismo espacio de memoria.
- #

ATOMSELECT COMMAND!!

atomselect creates a command with subcommands

- # these act on atoms chosen by the second argument (string)
- *#* the molid used for the selection is the first argument

- # The *set* command is used to retain the name of the new CMD
- # "\$allprot" and "\$allelse" will call those commands

Now \$allprot is a command that acts on the protein, # while \$allelse acts on the "non-proteianeceous" atoms

ATOMSELECT COMMAND!!

\$allprot and \$allelse commands have subcommands

%\$allprot get {beta} # lists B factors for "protein" atoms

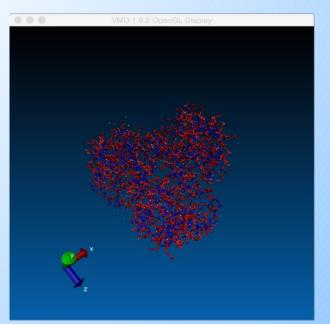
- % \$allprot set {beta} $1.0 \swarrow$ # set protein B factors to 1.0
- % \$allelse set {beta} $3.0 \swarrow$ # set other B factors to 3.0
- % set mybb [atomselect top "(name H N CA CO O OXT) and (protein)"]
- % \$mybb get {resid name}
- # VMD lists the BB atoms by residue number and type
- # as a list of lists (each element is a list of properties).
 - { {ele00 ele01 } { ele10 ele 11 } ... }

#We can now save atoms on a selection

%\$mybb writepdb "truebb.pdb"

- % \$mybb set beta "8.0" <mark>↓</mark>
- % \$mybb writepdb "betamod.pdb"
- # we have store two BB atom sets with different B-factors
- % mol selection "all"
- % mol representation licorice 0.3 90 90 ♀
- % mol color beta
- % mol material "EdgyShiny"
- % mol delrep top 0
- % mol addrep top
- # see the result in the OpenGL display

- how are atoms drawn?
 - how to paint them?
- what texture to apply?
- delete representation &
- add a new representation


#We can now save atoms on a selection

- **#** \$mybb is a command with subcommands, acting on selected atoms:
 - % \$mybb<mark>⇔</mark>

usage: < atomselection> < command> [args...] Commands for manipulating atomselection metadata: frame [new frame value] -- get/set frame molid|molindex -- get selection's molecule id text -- get selection's text delete -- delete atomselection (to free memory) global -- move atomselection to global scope -- recalculate selection update-- recalculate selectionCommands for getting/setting attributes:num-- number of atomslist-- get atom indicesgetlget < list of attributes>getbonds | setbonds < bondlists>getbondorders | setbondsorders < bondlists>getbondtypes|setbondtypesgetbondtypes|setbondtypesmoveto|moveby <3 vector>-- change atomic coordinatesImoveto|lmoveby <x> <y> <z>move < 4x4 transforamtion matrix>Commands for writing to a f le:writepdb < f lename>-- write sel to XXX f le (if XXX is a known format)

change the environment of the representation

- % display backgroundgradient 1
- % display resetview
- *#* the changes allowed us to color the sidechains, backbone
- # and heteroatoms with different colors
- *#* we can also encode information in these fields
- # In addition to PDB fields, VMD has three user fields
- # USER1, USER2 and USER3

Let us do aggressive changes to molecular information

- % \$mybb get {resname}
 ♀
- % \$mybb set {resname} {GLY}
- # Now all backbone atoms are labelled as GLY, *i.e.*
- *#* sequence information is lost for these atoms
- % \$mypdb writepdb "naked_John_Doe.pdb"
- *#* the resulting PDB file is a naked BB with no identity
- % quit<mark>↓</mark>
- > gedit "naked_John_Doe.pdb"
- # How can you find those things that have changed?

VMD commands can be in a file and called as scripts

- # Find out where is vmd program and edit script
- > which vmd
- > gedit pdb2polyAA

?????? write here the line that starts a BASH script!! #Comment to hide BASH call, it must end with \ exec /usr/local/bin/vmd -dispdev text -e "\$0" -args \${1+"\$@"}

if { [llength \$argv] < 3 } { puts "error: missing arguments"; quit} mol new →

mol addf le [lindex \$argv 0]

- # argv stores the arguments added at the command line
 # we shall need three arguments 0.input.pdb 1:AAA 2.output.pdb

set protbb [atomselect top"(type H N CA C CO O OXT) and (protein)"] set newaa [lindex \$argv 1] ← \$protbb set { resname} \$newaa \$protbb writepdb [lindex \$argv 2] ← quit

SAVE and exit

let us run it

- **#** give it execution permission
- \$ chmod 755 pdb2polyAA
- \$./pdb2polyAA myfile.pdb ALA allala.pdb
 - # Now you can make several instances of the pdb_bb
 - # with different monotonous aa sequences (all wrong)

¿Can we fix the protein data?

Using Rosetta design in Fixed backbone mode

Roseta design module is named fixbb.xxxxxxx

- # xxxxxx is the compilation form usually linuxgccrelease
 # to called we can use a flags file or give options in the command line
- # in barracuda you need to load the module "rosetta/??"
- # in other systems you need to set up the environment as requested in "rosetta instalation instructions"
- # ROSETTA3_DB environment variable sould be set and point to rosetta database forlder in the rosetta instalation folder.

Setting up resfile input # we shall need a rosetta "resfile" to indicate how fixbb is going to redesign the structure.

- # In this case we need to instruct the software to rebuild all the positions with complete freedom of choice:
- # i.e. put any compatible aminoacid residue at each one of the positions of the protein chain. The resfile should look like this:

ALLAA

start

this is a very simple instructions file. ALLAA means that any AA choise is fine (as long as it fits well into the protein backbone).

Set up flags file

the minimal "flags" file should be:

```
-l pdb4rbld.lst
-resfile r3_4XTB_frkA.res
-nstruct 5
```

this meand do the reconstruction 5 times

- # Here we need to list all pdb files to rebuild in the file pdb4rbld, this can be quickly done using:
- $s ls -1 *_frk???.pdb > pdb4rbld.lst </br>$

running Rosetta is now simple

> fixbb.xxxxxxx @flags > run.log 2>&1 &
when the run is finished you should find many new pdbfiles ending in:

_0001.pdb _0002.pdb ... etc.

Now what should we do with these?

you could see them in vmd with:

% for each npdb [glob "*.pdb"] {mol new \$npdb} 🤣

OJO: "2>&1" IS ONE WORD, with NO SPACES in it.

Hmmer Search

- **#** extract all fasta sequences form pdb files
- \$ pdb2fasta *_0???.pdb > xxxx_Xrd.seq
- **#** Next create a hmmer estatistical device
- \$ hmmbuild xxxx_Xrd.hmm xxxx_Xrd.seq
- **#** Search the sequence database:
- \$ hmmsearch xxxx_Xrd.hmm
 /home/dbr/uniprot_sprot.fasta > xxxx_Xrd.srch_uniprot
 2>&1 &
- \$ Now we need to see the results in xxxx_Xrd.srch_uniprot

Results

<pre># hmmsearch :: search profile(s) against a sequence database # HMMER 3.1b1 (May 2013); http://hmmer.org/ # Copyright (C) 2013 Howard Hughes Medical Institute.</pre>	
# Freely distributed under the GNU General Public License (GPLv3). #	
# query HMM file: # target sequence database: AtPPa1_AF_a-0.hmm /home/dbr/uniprot_sprot.fasta Headings, HMM model name (query),	
<pre># max ASCII text line length: unlimited # sequence reporting threshold: E-value <= 10 target sequences, etc</pre>	
# sequence search space set to: 10000000	
$Query: AtPPa1_{AF_a=0} [M=212]$	
Scores for complete sequences (score includes all domains): full sequence best 1 domain#dom-	
E-value score bias E-value score bias exp N Sequence Description	
2.2e-41 150.8 0.0 2.3e-41 150.7 0.0 1.0 1 sp[093V56]IPYR1_ARATH Soluble inorganic pyrophosphatase 1 0S=Arabidopsis thaliana 0X=3702 GN=PPA1 PE=1 SV=1	
3.5e-41 150.1 0.1 3.9e-41 149.9 0.1 1.0 1 sp 082597 IPYR5_ARATH Soluble inorganic pyrophosphatase 5 OS=Arabidopsis thaliana OX=3702 GN=PPA5 PE=2 SV=1 3.6e-40 146.8 0.0 4.1e-40 146.6 0.0 1.0 1 sp 048556 IPYR_MAIZE Soluble inorganic pyrophosphatase OS=Zea mays OX=4577 GN=IPP PE=2 SV=1	
4.3e-40 146.5 0.0 4.8e-40 146.4 0.0 1.0 1 sp 082793 IPYR3_ARATH Soluble inorganic pyrophosphatase 3 OS=Arabidopsis thaliana OX=3702 GN=PPA3 PE=2 SV=1 1.6e-39 144.7 0.0 1.8e-39 144.5 0.0 1.0 1 sp Q43187 IPYR_SOLTU Soluble inorganic pyrophosphatase PPA1 OS=Solanum tuberosum OX=4113 GN=PPA1 PE=1 SV=1	
2.4e-39 144.1 0.0 2.7e-39 143.9 0.0 1.0 1 sp A2X803 IPYR_ORYSI Soluble inorganic pyrophosphatase OS=Oryza sativa subsp. indica OX=39946 GN=IPP PE=2 SV=1 2.4e-39 144.1 0.0 2.7e-39 143.9 0.0 1.0 1 sp Q0DYB1 IPYR_ORYSJ Soluble inorganic pyrophosphatase OS=Oryza sativa subsp. japonica OX=39947 GN=IPP PE=2 SV=1	
1.5e-38 141.5 0.0 1.7e-38 141.3 0.0 1.0 1 sp 09LFF9 IPYRA ARATH Soluble inorganic pyrophosphatase 4 0S=Arabidopsis thaliana 0X=3702 GN=PPA4 PE=1 SV=1	
bias should be small	
Score is a ratio of Log(Probability HMMmodel)/Log(Probability random model)	
The smaller the E-value, the higher statistical significance	
Domain annotation for each sequence (and alignments): >> spl093V56 IPYR1_ARATH Soluble incorganic pyrophosphatase 1 05=Arabidopsis thaliana 0X=3702 GN=PPA1 PE=1 SV=1 # score bias c-Evalue i-Evalue metrom http://www.score bias c-Evalue i-Evalue i-Evalue http://www.score bias c-Evalue i-Evalue i-Ev	
# score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc AIISIIIICIL SECLIOII	
Alignments for each domain:	
== domain 1 score: 150.7 bits; conditional E-value: 2.8e-46 AtPPa1_AF_a-0 14 PPPPtideikknnqflpvPphPwydfdGsgapeitwvvilreeGarleyrldqqkGlvqlkrekqsptvdpfdeGfiPrtltelnkplltivvstlPvePGlwlkaeaiGllpvivlGlwnPiilavktedpnkrtiryanllkpqvliiiehlrkrreqenkyvlvgpvlpaeeakeqilkaiimwei 2 P P + i +v hPw+d++ G gap+i vv+ ++ 6 + +y+ld++ Gl++++r s v p++ 6f+Prtl e n p+ +v+ + Pv PG +l+a+aiGl+p+i +6 ++ i+av ++dp+ ++ + + l+p+ l i++ ++ enk v v ++lp+e+a e i+ ++	204
sp Q93V56 IPYR1_ARATH 14 PAPRINERILSSLSRRSVAAHPWHDLEIGPGAPQIFNVVVEITKGSKVKYELDKKTGLIKVDRILYSSVYPHNYGGVPRTLCEDNDPIDVLVIMQEPVLPGCFLRARAIGLMPMIDQGEKDDXIIAVCVDDPEYKHYTDIKELPPHRLSEIRRFFEDYKKNENKEVAVNDFLPSESAVEAIQYSMDLYAE 2 445555667777777899++++++++++++++++++++++++++++	
Alignments for each domain:	
== domain 1 score: 150.7 bits; conditional E-value: 2.8e-46	
AtPPa1_AF_a-0 14 PPPPtideikknnqflpvPphPwydfdrGsgapeit	
P P + i +v hPw+d++ G gap+i ← Conicidences	
sp Q93V56 IPYR1_ARATH 14 PAPRLNERILSSLSRRSVAAHPWHDLEIGPGAPQIF	
445555667777777899****************************	

Pay attention to:

- # The sequence of interest should be in the top hits of HMMer
- **#** The E-value should be small, REALLY SMALL
- # The score should be at least 0.3 length of your sequence (sqL), *i.e.*for a 330 aa protein: Score > 99. PDB data give an average Score of 0.6 sqL. Rosetta GOOD predictions give a Score of 0.99 sqL. Be suspicious if value is too high.
- # the alignment should be in frame start and end aminoacid numbers should match (correct the numbers if you truncated the sequence when modeling)
- # There should be NO GAPS in your alignment!