

®FQ, UNAM, derechos reservados

VMD hands on:
Structural file manipulation

Rogelio Rodríguez-Sotres,
Bioquímica, FQ, UNAM.

2022

®FQ, UNAM, derechos reservados

There are two ways of interacting with
VMD

Graphical widgets: clicking and interacting with
graphical assistants

The TK console: A programmable interface to an
interpreted language called tcl/tk.

If installed and started with python support, the
interface has a python/tk-inter interpreter (python 2
only).

®FQ, UNAM, derechos reservados

In this tutorial series:
 The use of tcl/tk commands in VMD will be

revised

®FQ, UNAM, derechos reservados

SOME NOTES ON THIS PRESENTATION:

This is a the slide title
THIS IS A GENERAL COMMENT

%THIS IS A COMMAND IN VMD-TK-CONSOLE

$ THIS IS A COMMAND IN A BASH TERMINAL

> THIS IS ALSO A COMMAND IN A TERMINAL
This is a secondary comment
% this is a command in a tk-console... again
$ this is a command in a terminal, yet again
> this is a command in a terminal, once more

► this is a note, or the computers response

sizes and colors change emphasis, NOT meaning

®FQ, UNAM, derechos reservados

IMPORTANT SYMBOLS IN THE PRESENTATION

USE OF SOME KEY'S IS SHOW AS FOLLOWS:

$ ⏎ or ENTR means press enter

␛ press ESCAPE key

$ ⇪ CTRL ⌥ are composed key usually press with some other,
for example: CTRLⒸ means presing control an C keys
toghether

←↑↓→ press left, up, down & right arrow key, respectively

FN① indicates pressing the funtion 1 key

®FQ, UNAM, derechos reservados

Let us start. Open a terminal ...

> cd $HOME⏎
> mkdir session2⏎
> cd session2⏎
Now, we need some file

to process...
Now we are on a folder

named session2
Let us proceed to download

some pdb files
from:

on windows, simply open
VMD and go to
extensions => Tk console

depa.fquim.unam.mx/proteinas/mdcb/model/data/PDBfiles4examples.zip

http://depa.fquim.unam.mx/proteinas/mdcb/model/data/PDBfiles4examples.zip

®FQ, UNAM, derechos reservados

Open a new terminal

> cd $HOME/session2⏎
> vmd⏎
> vmd> menu tkcon on⏎
the tk/console appears...

Click and write here ...

 > vmd|

®FQ, UNAM, derechos reservados

ON TCL/TK
tcl/tk is an interpreted computer language

documentation at: www.tcl.tk/doc/
It is a POSITIONAL language, meaning:
commands (CMD) are followed by arguments (ARG)
Order is strict, if input is WRONG, so will be the outcome
It has a quick built-in HELP

> mol⏎
► usage: mol <command> [args...]
► Molecules and Data: ...
►
► See also

> molinfo⏎

https://www.tcl.tk/doc/

®FQ, UNAM, derechos reservados

#More on VMD-tcl/tk
Tcl/Tk in VMDin VMD has:

 “general commands” & “mol commands”
examples of general commands
% expr "2+2^2"⏎

► 6
% set yo "Rogelio"⏎

► Rogelio
% puts "hola mundo, me llamo $yo"⏎

► hola mundo, me llamo Rogelio
% puts {hola mundo, me llamo $yo}⏎

► hola mundo, me llamo $yo

EXPLANATION:
Strings in quotes are scanned and substituted, before passing to the command
Variables like "yo" contain data and $yo points to its content: "yo Rogelio"➾
the command set takes a variable name, 1st arg and fils it with content

creates "yo" and fills it

makes the calculation

tcl answer

What?

®FQ, UNAM, derechos reservados

summary

commands in tcl have the form:

%CMD arg➊ arg➋ arg➌ …⏎

the next CMD is not equivalent, because or ARG order

%CMD arg➌ arg➊ arg➋ …⏎

NOTE: some comands may accept flags, example:
% puts -nonewline "Hola mundo"⏎
Usualy, the flag is optional

®FQ, UNAM, derechos reservados

Variables
Any name can be a variable, except for "reserved words"

Reserved words are those predefined: puts, set, etc…

their content can be a string or a list. Numbers are strings

list elements can be strings or a list, so lists can be nested

variable can be arrays with one, two or more indexes:

var(0), var (1), etc.

var(0,0), var(0,1)

indexes can be alfanumeric

var(a), var(b), etc

®FQ, UNAM, derechos reservados

examples

% set me “free” # me contains “free” as string
% set letras { ax by cz } # letras constains a list of strings
% puts $letras
> ax by cz
% lindex $letras 2 # retrieves the 3rth element of the list
> cz
% lappend letras {$letras} # adds to string $letras at “letras” end
% puts $letras
> ax by cz $letras
% lappend letras $letras #duplicates “letras” content
> ax by cz $letras ax by cz $letras
% foreach itm $letras { puts $itm} # runs over the list and prints
> ax
> by

...

®FQ, UNAM, derechos reservados

more examples

% set nums { 12 + 16 + 28 + 45} # nums is a list strings
% expr $nums
> 101 # now explain the result!
% set arry(0) 25
% set arry(1) 100
% puts $arry
> can't read "arry": variable is array
Arrays are indexed blocks of strings, but the index does not have to

be numeric.
% set arry(a) “abba”
% puts “ARRY: $arry(0), $arry(1), $arry(a)”
> ARRY: 25, 100, abba
% foreach itm $arry {puts $itm}
> can't read "arry": variable is array # but lists cannot be run like

lists

®FQ, UNAM, derechos reservados

More on VMD-tcl/tk

Commands can be nested using []
% puts "hola mundo, son las [clock format [clock seconds] -format

{%H:%M}]"⏎

► hola mundo, son las 17:20

EXPLANATION:
(1) The hour is determined in ms, (2) then replaces the inner [cmd ⓐ ⓑ ⓒ…]
(3) It is formated according to the optional flag -format {%H:%M}, meaning hh:mm
 # The result replaces the outer [cmd ⓐ ⓑ ⓒ…] and
(4) then the line is executes, i.e. writes a string

da formato a la hora

contesta la hora del día en s

escribe

¿y esto?

®FQ, UNAM, derechos reservados

NOW LET'S GO BANANAS (monkey business)
make sure you are in the right folder

% pwd # (same CMD as in bash)
► /home/sica/session2

If you are out of place, move into folder where your pdb files are:
% cd “~/Documentos/session2”
% mol new " .pdb"⚀⚀⚀⚀ # we loaded a file in memory⏎

► 0
(here is the code of a pdb file of your choice)⚀⚀⚀⚀
"0" is the "molid" i.e. a number given to your molecule
% mol new " .pdb"⚁⚁⚁⚁ ⏎ # a second molecule is loaded
% mol new " .pdb"⚂⚂⚂⚂ ⏎ # a third molecule is loaded
molinfo list # info about the molecul⏎ e

► 0 1 2

% mol delete 1
% molinfo list # ¿What’s going on?—explain the result

®FQ, UNAM, derechos reservados

The active molecule
Only one molecule has active focus at any time
% molinfo top⏎

► 2
"molinfo top" tell us the molid of the ACTIVE molecule
many command act on this molecule by default
you can type top insted of its number.
we can change the ACTIVE molecule with
mol top N ⏎ # N is any mol-ID integer
% mol top [lindex [molinfo list] 1]⏎

returns a list of loaded molecules

reads a list and returns element 0

changes the ACTIVE molecule

Explanation# Explanation
T# The most inner [] is replaced with a list ofIDs of loaded moleculeshe most inner [] is replaced with a list ofIDs of loaded molecules
lindexlindex examines the list, and returns the element Nº 2 (the second) examines the list, and returns the element Nº 2 (the second)
"mol top" makes "ACTIVE" that particular molecule# "mol top" makes "ACTIVE" that particular molecule

¿Qué pasa con el comando “mol top 1”?

®FQ, UNAM, derechos reservados

more loading

VMD number molecules without reusing numbers
in the graphics window, only two loaded "mols" are shown
% mol top 0 # la molécula activa es ahora la cero
% mol addfile " .pdb"⚀⚀⚀⚀ #añadimos un pdb sobre si mismo⏎
% molinfo top get numframes
ahora VMD tiene el doble de copias de la molécula dentro del mismo

espacio de memoria.
#

®FQ, UNAM, derechos reservados

ATOMSELECT COMMAND!!
atomselect creates a command with subcommands

these act on atoms chosen by the second argument (string)
the molid used for the selection is the first argument

% set allprot [atomselect top "protein"]⏎

% set allelse [atomselect top "not protein"]⏎
The setset command is used to retain the name of the new CMD
"$allprot" and "$allelse" will call those commands

which atoms?

which molid?

where the result is stored

Now $allprot$allprot is a command that acts on the protein,
while $allelse$allelse acts on the "non-proteianeceous" atoms

®FQ, UNAM, derechos reservados

ATOMSELECT COMMAND!!

$allprot and $allelse commands have
subcommands⏎

%$allprot get {beta} # lists B factors for "protein" atoms
% $allprot set {beta} 1.0⏎ # set protein B factors to 1.0
% $allelse set {beta} 3.0⏎ # set other B factors to 3.0
% set mybb [atomselect top "(name H N CA CO O OXT) and (protein)"]⏎
% $mybb get {resid name}⏎
VMD lists the BB atoms by residue number and type
as a list of lists (each element is a list of properties).

► { {ele00 ele01 } { ele10 ele 11} ... }

®FQ, UNAM, derechos reservados

#We can now save atoms on a selection
%$mybb writepdb "truebb.pdb"

% $mybb set beta "8.0"⏎
% $mybb writepdb "betamod.pdb"⏎
we have store two BB atom sets with different B-factors
Let us see the result
% mol selection "all"⏎
% mol representation licorice 0.3 90 90⏎
% mol color beta⏎
% mol material "EdgyShiny"⏎
% mol delrep top 0⏎
% mol addrep top⏎
see the result in the OpenGL display

this acts on TOP and is for graphics

how are atoms drawn?

how to paint them?

what texture to apply?

delete representation &

add a new representation

®FQ, UNAM, derechos reservados

#We can now save atoms on a selection

$mybb is a command with subcommands, acting on selected atoms:
% $mybb⏎

usage: <atomselection> <command> [args...]
Commands for manipulating atomselection metadata:
frame [new frame value] -- get/set frame
molid|molindex -- get selection's molecule id
text -- get selection's text
delete -- delete atomselection (to free memory)
global -- move atomselection to global scope
update -- recalculate selection
Commands for getting/setting attributes:
num -- number of atoms
list -- get atom indices
get|get <list of attributes> -- same as 'atomselect keywords'
getbonds | setbonds <bondlists> -- get (list) or set bonded atoms
getbondorders | setbondsorders <bondlists> -- get or set list of bond orders
getbondtypes|setbondtypes <bondlists> -- get or set list of bond types
moveto|moveby <3 vector> -- change atomic coordinates
lmoveto|lmoveby <x> <y> <z>
move <4x4 transforamtion matrix>
Commands for writing to a f ile:
writepdb <f ilename> -- write sel to PDB f ile
writeXXX <f ilename> -- write sel to XXX f ile (if XXX is a known format)

®FQ, UNAM, derechos reservados

change the environment of the representation

% display backgroundgradient 1⏎
% display resetview⏎
the changes allowed us to color the sidechains, backbone
and heteroatoms with different colors
we can also encode information in these fields
In addition to PDB fields, VMD has three user fields
USER1, USER2 and USER3

®FQ, UNAM, derechos reservados

Let us do aggressive changes to molecular information

% $mybb get {resname}⏎
% $mybb set {resname} {GLY}⏎
Now all backbone atoms are labelled as GLY, i.e.
sequence information is lost for these atoms
% $mypdb writepdb "naked_John_Doe.pdb"⏎
the resulting PDB file is a naked BB with no identity
% quit⏎

> gedit "naked_John_Doe.pdb"

How can you find those things that have changed?

®FQ, UNAM, derechos reservados

VMD commands can be in a file and called as scripts# VMD commands can be in a file and called as scripts

Find out where is vmd program and edit script
> which vmd⏎ # usually /usr/local/bin/vmd
> gedit pdb2polyAA⏎

????? write here the line that starts a BASH script!!????? write here the line that starts a BASH script!!
#Comment to hide BASH call, it must end with \⏎
exec /usr/local/bin/vmd -dispdev text -e "$0" -args ${1+"$@"}⏎

if { [llength $argv] < 3 } { puts "error: missing arguments"; quit}⏎
mol new⏎
mol addf ile [lindex $argv 0]⏎

argv stores the arguments added at the command line
we shall need three arguments 0:input.pdb 1:AAA 2:output.pdb

set protbb [atomselect top "(type H N CA C CO O OXT) and (protein)"]⏎
set newaa [lindex $argv 1]⏎
$protbb set { resname} $newaa⏎
$protbb writepdb [lindex $argv 2]⏎
quit⏎
SAVE and exit

®FQ, UNAM, derechos reservados

let us run it

give it execution permission

$ chmod 755 pdb2polyAA

$./pdb2polyAA myfile.pdb ALA allala.pdb
Now you can make several instances of the pdb_bb
with different monotonous aa sequences (all wrong)

®FQ, UNAM, derechos reservados

¿Can we fix the protein data?

...

®FQ, UNAM, derechos reservados

Using Rosetta design in Fixed backbone mode

Roseta design module is named fixbb.xxxxxxxx
xxxxxx is the compilation form usually linuxgccrelease

to called we can use a flags file or give options in the
command line

in barracuda you need to load the module "rosetta/??"

in other systems you need to set up the environment
as requested in "rosetta instalation instructions"

ROSETTA3_DB environment variable sould be set and
point to rosetta database forlder in the rosetta
instalation folder.

®FQ, UNAM, derechos reservados

Setting up resfile input
we shall need a rosetta "resfile" to indicate how fixbb is

going to redesign the structure.
In this case we need to instruct the software to rebuild all the

positions with complete freedom of choice:
i.e. put any compatible aminoacid residue at each one of the

positions of the protein chain. The resfile should look like this:

ALLAA

start
–––––––––––––––––

this is a very simple instructions file. ALLAA means that any AA
choise is fine (as long as it fits well into the protein backbone).

®FQ, UNAM, derechos reservados

Set up flags file
the minimal "flags" file should be:

-l pdb4rbld.lst
-resfile r3_4XTB_frkA.res
-nstruct 5

this meand do the reconstruction 5 times

Here we need to list all pdb files to rebuild in the file
pdb4rbld, this can be quickly done using:

$ ls -1 *_frk???.pdb > pdb4rbld.lst⏎
here we assume the files were named as xxxx_frkAaa.pdb,

xxxx_frkAab.pdb and so on

®FQ, UNAM, derechos reservados

running Rosetta is now simple

> fixbb.xxxxxxxx @flags > run.log 2>&1 &⏎
when the run is finished you should find many new

pdbfiles ending in:
 _0001.pdb _0002.pdb ... etc.

Now what should we do with these?
you could see them in vmd with:

%for each npdb [glob "*.pdb"] {mol new $npdb} ⏎

OJO: "2>&1" IS ONE WORD, with NO SPACES in it.

®FQ, UNAM, derechos reservados

Hmmer Search

extract all fasta sequences form pdb files

$ pdb2fasta *_0???.pdb > xxxx_Xrd.seq⏎
Next create a hmmer estatistical device

$ hmmbuild xxxx_Xrd.hmm xxxx_Xrd.seq⏎
Search the sequence database:

$ hmmsearch xxxx_Xrd.hmm
/home/dbr/uniprot_sprot.fasta > xxxx_Xrd.srch_uniprot
2>&1 &⏎

$ Now we need to see the results in
xxxx_Xrd.srch_uniprot

®FQ, UNAM, derechos reservados

Results

Headings, HMM model name (query),
target sequences, etc

List of meaningfull hits (above threshold)

The smaller the E-value, the higher statistical significance
Score is a ratio of Log(Probability HMMmodel)/Log(Probability random model)

bias should be small
this is different only if your match is discontinuos

Alignment section

conicidences
DB sequence

HMMer device

®FQ, UNAM, derechos reservados

Pay attention to:
The sequence of interest should be in the top hits of

HMMer

The E-value should be small, REALLY SMALL

The score should be at least 0.3 length of your ❌

sequence (sqL), i.e.for a 330 aa protein: Score > 99. PDB
data give an average Score of 0.6 sqL. Rosetta GOOD ❌

predictions give a Score of 0.99 sqL. Be suspicious if ❌

value is too high.

the alignment should be in frame start and end aminoacid
numbers should match (correct the numbers if you
truncated the sequence when modeling)

There should be NO GAPS in your alignment!

	TCL in VMD
	The 2 ways of talking to VMD
	Slide 3
	convensions in this presentation
	Slide 5
	prime a folder
	The TK console in VMD
	TCL definition and style
	Some general commands
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	nesting commands
	Let's go bananas
	The active molecule
	more on loading mols
	Atomselect commad
	using atomselections
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

