Química Termodinámica Estadística: Potenciales termodinámicos Prof. Jesús Hernández Trujillo Facultad de Química, UNAM **Table 1** Conjugate pairs of variables in work terms for the fundamental equation for U^a . | Type of work | Intensive variable | Extensive variable | Differential work in $\mathrm{d}U$ | |------------------------|--------------------|-----------------------|------------------------------------| | Mechanical | | | | | Pressure-volume | -P | V | -P dV | | Elastic | f | L | fd L | | Gravitational | $\psi = gh$ | $m = \sum M_i n_i$ | $\psi dm = \sum gh M_i dn_i$ | | Surface | γ | $A_{_{\mathbf{S}}}$ | γdA_s | | Electromagnetic | * | 3 | | | Charge transfer | ϕ_i | Q_i | ϕ_i d Q_i | | Electric polarization | \boldsymbol{E} | p | $E \cdot \mathrm{d} p$ | | Magnetic polarization | \boldsymbol{B} | m | $B \cdot dm$ | | Chemical | | | | | Chemical: no reactions | μ_i | n_i (species) | $\mu_i dn_i$ | | Chemical: reactions | μ_i | n_{ci} (components) | μ_i d n_{ci} | ^aHere $\psi = gh$ is the gravitational potential, g is the gravitational acceleration, h is height above the surface of the earth, m is mass, M_i is molar mass, ϕ_i is the electric potential of the phase containing species i, Q_i is the contribution of species i to the electric charge of a phase, z_i is the charge number, F is the Faraday constant, f is force of elongation, L is length in the direction of the force, γ is surface tension, A_s is surface area, E is electric field strength, p is the electric dipole moment of the system, p is magnetic field strength (magnetic flux density), and p is the magnetic moment of the system. In some electrochemical systems, $Q_i = Fz_i n_i$, so that $dQ_i = Fz_i dn_i$. The dots indicate scalar products of vectors. Some of the other work terms can be written in vector notation. Other types of work terms are possible, and some of the expressions for differential work are more complicated; for example, the force on a solid may be represented by a tensor and p may be a centrifugal potential. The term $p dA_s$ applies to flat surfaces. $R \cdot A \cdot Alberty, Pure Appl. Chem. 73 \cdot 1349-1380, 2001$ Table 3.3 Thermodynamic Potentials | Potential and
Independent
Variables | Definition | State Equations | Integrated Form | Gibbs-Duhem Equation | |---|--------------------------------------|---|--|--| | Entropy $S(U,V,N)$ | - | $\frac{1}{T} = \frac{\partial S}{\partial U}_{VN}, \frac{p}{T} = \frac{\partial S}{\partial V}_{UN}, \frac{\mu}{T} = -\frac{\partial S}{\partial N}_{UV}$ | $S = \frac{U}{T} + \frac{pV}{T} - \frac{\mu N}{T}$ | $U d\left(\frac{1}{T}\right) + V d\left(\frac{p}{T}\right) - N d\left(\frac{\mu}{T}\right) = 0$ | | Internal energy $U(S, V, N)$ | _ | $T = \frac{\partial U}{\partial S}_{\nu N}, p = -\frac{\partial U}{\partial V}_{SN}, \mu = \frac{\partial U}{\partial N}_{S\nu}$ | $U = Ts - pV + \mu N$ | $S dT - V dp + N d\mu = 0$ | | Enthalpy $H(S,p,N)$ | H = U + pV | $T = \frac{\partial H}{\partial S}_{pN}, V = \frac{\partial H}{\partial p}_{SN}, \mu = \frac{\partial H}{\partial N}_{Sp}$ | $H = TS + \mu N$ | $S dT - V dp + N d\mu = 0$ | | Helmholtz $F(T,V,N)$ | F = U - TS | $S = -\frac{\partial F}{\partial T}_{\nu N}, p = -\frac{\partial F}{\partial V}_{TN}, \mu = \frac{\partial F}{\partial N}_{T\nu}$ | $F = -pV + \mu N$ | $S dT - V dp + N d\mu = 0$ | | Gibbs $G(T,p,N)$ | G = U + pV - TS | $S = -\frac{\partial G}{\partial T}_{pN}, V = \frac{\partial G}{\partial p}_{TN}, \mu = \frac{\partial G}{\partial N}_{Tp}$ | $G = \mu N$ | $S dT - V dp + N d\mu = 0$ | | Massieu $J\left(\frac{1}{T}, V, N\right)$ | $J = S - \frac{U}{T}$ | $U = -\frac{\partial J}{\partial (1/T)} \underset{\nu_N}{,} \frac{p}{T} = \frac{\partial J}{\partial V} \underset{TN}{,} \frac{\mu}{T} = -\frac{\partial J}{\partial N} \underset{T\nu}{,}$ | $J = \frac{pV}{T} - \frac{\mu N}{T}$ | $U d\left(\frac{1}{T}\right) + V d\left(\frac{p}{T}\right) - N d\left(\frac{\mu}{T}\right) = 0$ | | Planck $Y\left(\frac{1}{T}, p, N\right)$ | $Y = S - \frac{U}{T} - \frac{pV}{T}$ | $H = -\frac{\partial Y}{\partial (1/T)_{pN}}, \frac{V}{T} = -\frac{\partial Y}{\partial p}_{TN}, \frac{\mu}{T} = -\frac{\partial Y}{\partial N}_{Tp}$ | $Y = -\frac{\mu N}{T}$ | $H d\left(\frac{1}{T}\right) + \frac{V}{T} d p - N d\left(\frac{\mu}{T}\right) = 0$ | $G.\ Emanuel,\ Advanced\ Classical\ Thermodynamics$