Termodinámica estadística: repaso de mecánica cuántica

Jesús Hernández Trujillo Facultad de Química, UNAM

Contenido

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

- 1. Ecuación de Schrödinger.
- 2. Partículas idénticas.
- 3. Partícula en una caja de potencial infinito.
- 4. Oscilador armónico.
- 5. Rotor rígido.
- 6. Sistemas de partículas independientes.
- 7. Superficies de energía potencial.
- 8. Términos espectroscópicos atómicos.

Ecuación de Schrödinger

Contenido

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos En mecánica cuántica, el estado de un sistema se representa por una función de onda:

$$\Psi=\Psi(ar{r}_1,ar{r}_2,\ldots,ar{r}_n,t)$$

que satisface la ecuación de Schrödinger dependiente del tiempo

$$\hat{H}\Psi=i\hbarrac{\partial\,\Psi}{\partial\,t}\,,$$

donde

$$\hat{H} = -rac{1}{2}\sum_{i=1}^n rac{\hbar^2}{m_i}
abla_i^2 + V(ar{r}_1, ar{r}_2, \dots, ar{r}_n, t)$$

es el operador Hamiltoniano del sistema.

Repaso m. cuántica/JHT

Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico

Rotor rígido

- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

Interpretación estadística de Ψ (Born):

La probabilidad de encontrar simultáneamente a la partícula 1 en $d\bar{r}_1$, a la 2 en $d\bar{r}_2$, etc., es:

$$egin{aligned} |\Psi|^2 dar{r}_1 & \cdots dar{r}_n \ &= \Psi(ar{r}_1, \dots ar{r}_n, t) \Psi^*(ar{r}_1, \dots ar{r}_n, t) dar{r}_1 \cdots dar{r}_n \end{aligned}$$

⇒ Falta considerar el espín

Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Caso particular:

Potencial independiente del tiempo, $V(\bar{r}_1, \ldots \bar{r}_n)$.

- Movimiento unidimensional de una partícula: $\Psi(x,t)$.
- Substituir V = V(x) en la Ecuación de Schrödinger dependiente del tiempo:

$$-rac{\hbar}{i}rac{\partial\Psi(x,t)}{\partial t}=-rac{\hbar^2}{2m}rac{\partial^2\Psi(x,t)}{\partial x^2}+V(x)\Psi(x,t)$$

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos <u>Ejercicio</u> Escribe la función de onda como $\Psi(x,t)=f(t)\psi(x)$ en la ecuación anterior para obtener:

$$-rac{\hbar^2}{2m}rac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$

← ecuación de Schrödinger independiente del tiempo

Además,
$$f(t) = e^{-Eit/\hbar}$$
. Por lo tanto:

$$\Psi(x,t)=e^{-Eit/\hbar}\psi(x)$$

Postulado: **E** es la energía de la partícula.

Adicionalmente:

$$egin{array}{rcl} \Psi(x,t)|^2&=&\Psi(x,t)^{\star}\Psi(x,t)\ &=&\left[e^{+Eit/\hbar}\psi(x)^{\star}
ight]\left[e^{-Eit/\hbar}\psi(x)
ight] \ &{}_{6/56} \end{array}$$

Repaso m. cuántica/JHT

Contenido
Ecuación de Schrödinger
Partículas idénticas
Partícula en una caja
Oscilador armónico
Rotor rígido
Espectroscopia rotacional-vibracional (diatómicas)
Superficies de energía potencial
Términos espectroscópicos atómicos

En un problema particular, hay que definir:

V(x) condiciones a la frontera

para encontrar $\psi(x)$ y E.

Ecuación de Schrödinge	Э
------------------------	---

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico

Rotor rígido

- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Grados de libertad:

Traslacionales.Vibracionales.

Rotacionales.Electrónicos.

 $\Psi = \Psi_{\rm tras} \Psi_{\rm vib} \Psi_{\rm rot} \Psi_{\rm elec}$

Analizaremos modelos importantes en mecánica estadística:

Partícula en una caja: Traslaciones atómicas y moleculares.
Oscilador armónico: Vibraciones moleculares.
Rotor rígido: Rotaciones moleculares.

Partículas idénticas

Contenido Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido

- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

- A nivel macroscópico, dos objetos (partículas) pueden ser distinguibles (por color, numeración, etc.).
- Las partículas subatómicas del mismo tipo tienen la característica de ser indistinguibles.
- Es decir, tienen las mismas propiedades (masa, espín, etc.)

Para partículas idénticas:

La descripción del sistema requiere la consideración del espín: $ar{x}=\{ar{r},s\}$

Ejemplo: para un sistema de dos partículas:

 $\psi(ar{x}_1,ar{x}_2)$

Contenido Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

La densidad de probabilidad de partículas idénticas cumple

$$|\psi(ar{x}_1,ar{x}_2)|^2 = |\psi(ar{x}_2,ar{x}_1)|^2$$

Por lo tanto:

$$\psi(ar{x}_1,ar{x}_2)=\gamma\psi(ar{x}_2,ar{x}_1)$$

donde
$$\gamma=\pm 1.$$

<u>Casos:</u>

- Bosones ($\gamma = +1$):
 - obedecen la estadística de Bose-Einstein.
 - tienen espín entero ($s=0,1,2,\ldots$).

Ejemplos: fotón, gluón (s=1)

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

Fermiones $(\gamma = -1)$:

- obedecen la estadística de Fermi-Dirac.
- tienen espín semientero ($s = 1/2, 3/2, \ldots$).
 Ejemplos: electrón, protón, neutrón (s = 1/2).

Para un sistema de dos electrones:

$$\psi(ar{x}_1,ar{x}_2)=-\psi(ar{x}_2,ar{x}_1)$$

La función de onda es antisimétrica (cambia de signo) ante el intercambio de \overline{x}_1 por \overline{x}_2 . Principio de exclusión de Pauli.

Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

Ejemplo:

Un sistema de dos fermiones independientes con funciones de onda

$$\psi_1(ar{x}_1)$$
 y $\psi_2(ar{x}_2)$

con energías E_1 y E_2 .

Una posible función de onda total:

$$\psi(ar{x}_1,ar{x}_2) = rac{1}{\sqrt{2}} \left[\psi_1(ar{x}_1) \psi_2(ar{x}_2) - \psi_1(ar{x}_2) \psi_2(ar{x}_1)
ight]$$

Nótese que cuando $\psi_1=\psi_2$:

 $\psi(ar{x}_1,ar{x}_2)=0$

(hay restricción en los números de ocupación)

Contenido Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

```
Espectroscopia
rotacional-vibracional
(diatómicas)
```

Superficies de energía potencial

Términos espectroscópicos atómicos

Ejemplo:

Un sistema de dos bosones independientes con espín $S=0~{\rm y}$ funciones de onda (ej: $^4{\rm He})$

$$\psi_1(ar r_1)$$
 y $\psi_2(ar r_2)$

con energías E_1 y E_2 .

Una posible función de onda total:

$$\Psi(ar{r}_1,ar{r}_2) = rac{1}{\sqrt{2}} \left[\psi_1(ar{r}_1) \psi_2(ar{r}_2) + \psi_1(ar{r}_2) \psi_2(ar{r}_1)
ight]$$

Nótese que cuando $\psi_1 = \psi_2$:

 $\Psi
eq 0$

(No hay restricción en los números de ocupación)

Partícula en una caja

Repaso m. cuántica/JHT

La solución general es

Contenido

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Superficies de energía

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional

(diatómicas)

potencial

Términos

atómicos

espectroscópicos

$$\psi(x)=c_1 \sin kx+c_2 \cos kx\,, \ \ k=\sqrt{rac{2mE}{\hbar^2}}$$

Las condiciones a la frontera

$$\psi(0)=\psi(a)=0$$

conducen a

$$c_2 = 0$$
 y $ka = n\pi$, $n = 1, 2, ...$

La energía está cuantizada:

 $E_n=rac{n^2h^2}{8ma^2}$

15 / 56

La función de onda normalizada es

$$\psi_n(x) = \sqrt{rac{2}{a}} \sin rac{n \pi x}{a}$$

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Espectroscopia de la partícula en una caja.

- Modelo para estudiar interacción radiación materia de moléculas conjugadas, electrones en metales.
- l Transición n
 ightarrow m
- Regla de selección: m n = impar.

Condiciones a la frontera: $\psi=0$ en las tapas de la caja.

$$\psi(x,y,0)=0; \hspace{1em} \psi(x,y,c)=0; \ldots, \psi(a,y,z)=0$$

Repaso m. cuántica/JHT

Contenido Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial

Términos espectroscópicos atómicos

La solución (separación de variables) es:

$$\psi_{n_x,n_y,n_z}(x,y,z) = \sqrt{\frac{8}{abc}} \operatorname{sen} \frac{n_x \pi x}{a} \operatorname{sen} \frac{n_y \pi y}{b} \operatorname{sen} \frac{n_z \pi z}{c}$$
$$E_{n_x,n_y,n_z} = \frac{h^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right)$$

 $n_x, n_y, n_z = 1, 2, \dots$

Contenido Ecuación de Schrödinger Partículas idénticas	Niveles y estados	
Partícula en una caja		
Oscilador armónico	E_{n_x,n_y,n_z} (v) degeneraci	ón
Rotor rígido		
Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial	$\overline{\psi_{221}} \ \overline{\psi_{212}} \ \overline{\psi_{122}} \ \omega =$	= 3
Términos espectroscópicos atómicos	$\overline{\psi_{211}}$ $\overline{\psi_{121}}$ $\overline{\psi_{112}}$ $\omega=$	= 3 a
	$\overline{\psi_{111}}$ $\omega =$	$E=rac{h^2}{8ma^2}(n_x^2+n_y^2+n_z^2)$ $c=b=a$

•

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Ejemplo:

La nitrogenasa es una enzima que convierte N₂ en NH₃ que contiene un cúmulo Fe₄S₄ formando un cubo de arista a = 3 Å. Utiliza el modelo de una partícula en una caja de potencial infinito cúbica y calcula la longitud de onda de la radiación electromagnética para llevar a cabo la transición electrónica de más baja energía. Supón que el número total de electrones de valencia es 20.

Oscilador armónico

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos

Masa reducida:

$$\mu = rac{m_A m_B}{m_A + m_B}$$

La frecuencia de oscilación del

 $u = rac{1}{2\pi} \sqrt{rac{k}{\mu}} = rac{\omega}{2\pi}$

Ecuación de Schrödinger:

resorte es

$$-rac{\hbar^2}{2\mu}rac{d^2\psi(x)}{dx^2}+rac{1}{2}kx^2\psi(x)=E\psi(x)$$

Condiciones frontera:

$$\lim_{x
ightarrow\pm\infty}\psi(x)=0$$

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja

Oscilador armónico

- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos La solución es:

$$egin{array}{rcl} \psi_v(x) &=& N_v H_v(eta^{1/2} x) e^{-eta x^2/2} \ &E_v &=& (v+rac{1}{2}) h
u &v=0,1,2\dots \end{array}$$

donde $eta = rac{\mu k}{\hbar^2}$

 $H_v(y)$: polinomio de Hermite de grado v

Ejemplos:

$$egin{array}{ll} H_0(y) = 1 & H_1(y) = 2y & H_2(y) = 4y^2 - 2 \ H_3(y) = 8y^3 - 12y & H_4(y) = 16y^4 - 48y^2 + 12 \end{array}$$

 N_v : constante de normalización

24 / 56

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos Transiciones espectroscópicas

 $\Delta v = \pm 1 \quad \Rightarrow \quad
u_{rad} =
u \quad (1 \text{ sola señal})$

Ejemplo:

El espectro i.r. de HCl muestra una banda en $\bar{\nu} = 2885$ cm⁻¹. Calcula:

- 1. La frecuencia vibracional de la molécula.
- 2. La constante de fuerza.
- 3. La energía de punto cero vibracional.
- 4. El número de ondas de la banda correspondiente al DCI.

Rotor rígido

$$-\frac{\hbar^2}{2\mu r^2} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\psi(\theta,\phi)}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2\psi(\theta,\phi)}{\partial\phi^2} \right] = E\psi(\theta,\phi)$$

Contenido Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos La solución es:

$$\psi_{j,m_j}(heta,\phi)=Y_j^{m_j}(heta,\phi)$$

Armónicos esféricos:

$$Y_j^{m_j}(heta,\phi) = N_{j,m_j} \ e^{\imath m_j \phi} \underbrace{P_j^{|m_j|}(\cos heta)}_{ ext{polinomios}}_{ ext{asocial}} \ ext{dos de Legendre}$$

donde

$$P_l^{|m_j|}(x) = rac{1}{2^l l!} (1-x^2)^{|m_j|/2} rac{d^{\,l+|m_j|} (x^2-1)^l}{dx^{\,l+|m_j|}}$$

Algunos armónicos esféricos:

$$Y_0^0 = \left(rac{1}{4\pi}
ight)^{1/2} \,,\, Y_1^0 = \left(rac{3}{4\pi}
ight)^{1/2} \,\cos heta \,,\, Y_1^{\pm 1} = \left(rac{3}{8\pi}
ight)^{1/2} \,\sin heta \, e^{\pm i\phi}$$

Repaso m. cuántica/JHT

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos Números cuánticos:

 $j~=~0,1,2,\ldots$ $m_j~=~-j,-j+1,\ldots,j-1,j$ Además: $E_j=rac{\hbar^2}{2I}j(j+1)\,,~~$ degeneración: $\omega_j=2j+1$

Momento de inercia: $I=\mu r^2$

Transiciones espectroscópicas (absorción):

$$h
u=\Delta E=E_{j+1}-E_j$$
 $u=2B(j+1)\,, \ \ B=rac{h}{8\pi^2 I}$ (constante rotacional)

Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial Términos espectroscópicos atómicos

Contenido

En número de ondas,
$$ar{
u}=\lambda^{-1}$$
, (ej cm $^{-1}$): $ar{
u}=2ar{B}(j+1), \ \ ar{B}=rac{h}{8\pi^2 c I}$ El espectro:

4B

E

2B

Dado que la separación entre las líneas del espectro de microondas de 27 Al¹H es de 12.604 cm⁻¹ calcula la longitud de enlace de la molécula.

6**B**

8B

V

Espectroscopia rotacional-vibracional (diatómicas)

Contenido

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos Oscilador armónico:

$$E_n=(v+1/2)h
u, \qquad v=0,1,2,\dots$$

 $\hookrightarrow \nu$: frecuencia fundamental

Reglas de selección:

- 1. $\Delta v = \pm 1$
- 2. Momento dipolar diferente de cero

Término vibracional:

$$G(v)=rac{E_v}{hc}=\left(v+rac{1}{2}
ight)rac{
u}{c}=\left(v+rac{1}{2}
ight)\overline{
u}$$

R R

Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos

Rotor rígido:

$$E_j = rac{\hbar^2}{2I} j(j+1), \qquad j = 0, 1, 2, \ldots$$

Regla de selección:
$$\Delta m_j = 0\,, \qquad \Delta j = \pm 1$$

Término rotacional:

$$F(j) = \overline{B}j(j+1)$$

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos

Energía vibracional-rotacional:

$$S(v,j) = G(v) + F(j)$$

Reglas de selección:

1.
$$\Delta v = \pm 1$$

2.
$$\Delta m=0, \ \Delta j=\pm 1$$

3. Momento dipolar diferente de cero

Repaso m. cuántica/JHT

Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial

Contenido

Términos espectroscópicos atómicos Ejemplo: Transición vibracional v o v + 1 (absorción)(a) Transiciones con $\Delta j = -1$ (Rama P)

$$egin{array}{rcl} \overline{
u}_P(j) &=& S(v+1,j-1)-S(v,j) \ &=& \overline{
u}-2j\overline{B}\,, j=1,2,\ldots \end{array}$$

Líneas ubicadas en $\overline{
u}-2\overline{B},\overline{
u}-4\overline{B},\ldots$

(b) Transiciones con $\Delta j=+1$ (Rama R)

$$egin{array}{rcl} \overline{
u}_R(j)&=&S(v+1,j+1)-S(v,j)\ &=&\overline{
u}+2(j+1)\overline{B}\,,j=0,1,\ldots \end{array}$$

Líneas ubicadas en $\overline{
u}+2\overline{B},\overline{
u}+4\overline{B},\ldots$

Contenido
Ecuación de Schrödinger
Partículas idénticas
Partícula en una caja
Oscilador armónico
Rotor rígido
Espectroscopia rotacional-vibracional (diatómicas)
Superficies de energía potencial
Términos espectroscópicos

Separación entre líneas: $pprox 2\overline{B}$

En la práctica, la separación no es exactamente constante

(contribuciones anarmónicas y centrífugas)

Superficies de energía potencial

Contenido Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional

Superficies de energía potencial

Términos espectroscópicos atómicos

(diatómicas)

El Hamiltoniano molecular es

$$\hat{H} = \hat{T}_n + \hat{V}_{nn} + \hat{H}_e$$

donde

$$\hat{H}_e = \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee}$$

es el Hamiltoniano electrónico.

A núcleos fijos, \hat{V}_{nn} es constante.

En la aproximación de Born–Oppenheimer:

$$\Psi(\bar{r},\bar{R}_A) = \Psi_e(\bar{r},\bar{R}_A)\Phi_n(\bar{R}_A) \tag{10}$$

(9)

36 / 56

(8)

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Superficies de energía

Oscilador armónico

Rotor rígido Espectroscopia rotacional-vibracional

(diatómicas)

potencial

Términos

atómicos

espectroscópicos

Ecuación electrónica:

$$H_e\Psi_e=arepsilon\Psi_e$$

 $\implies \varepsilon$: energía electrónica para núcleos fijos Además:

$$\varepsilon + \hat{V}_{nn} = E(\bar{R}_A)$$
 (12)

Alternativamente, al sustituir (12) en (11):

$$(\hat{H}_e + \hat{V}_{nn})\Psi_e = E(\bar{R}_A)\Psi_e \tag{13}$$

(11)

Ecuación nuclear:

```
Partículas idénticas
Partícula en una caja
Oscilador armónico
Rotor rígido
Espectroscopia
rotacional-vibracional
(diatómicas)
```

Ecuación de Schrödinger

Contenido

```
Superficies de energía potencial
```

```
Términos
espectroscópicos
atómicos
```

$[\hat{T}_n + E(\bar{R}_A)]\Phi = E\Phi$ (14) *potencial para el movimiento nuclear*

 $E(ar{R}_A)$: energía molecular para una configuración nuclear fija.

- Al resolver (13) se obtiene:
 - $\Box \quad \Psi_e \\ \Box \quad E(\bar{R}_A), \text{ se usa para resolver (14)}$
- Al expresar $\Phi = \Phi_{
 m rot}, \Phi_{
 m vib}, \Phi_{
 m tras}$ y resolver (14) se obtiene:
 - $\ \ \ \{\Phi,E\}$
 - □ Las contribuciones de los grados de libertad nucleares

Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial Términos espectroscópicos atómicos

Contenido

Ecuación de Schrödinger

Para una molécula diatómica

Términos espectroscópicos atómicos

Contenido Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos

Momento angular electrónico.

Las partículas idénticas poseen momento angular orbital y de espín: $ar{L}(x,y,z), \ ar{s}(\omega).$

Momento angular orbital: $\hat{L}^2 Y_{\ell}^{m_{\ell}} = \ell(\ell+1)\hbar^2 Y_{\ell}^{m_{\ell}}$ $\hat{L}_z Y_{\ell}^{m_{\ell}} = m_{\ell}\hbar Y_{\ell}^{m_{\ell}}$ donde $m_{\ell} = -\ell, -\ell+1, \dots, 0, \dots, \ell-1, \ell$ Momento angular de espín: $\hat{s}^2 \psi = s(s+1)\hbar^2 \psi$ $\hat{s}_z \psi = m_s \hbar \psi$ donde $m_s = -s, -s+1, \dots, 0, \dots, s-1, s$

- Contenido
- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

- No hay funciones de onda espaciales que correspondan a los estados de espín.
- Para fermiones (protones, neutrones, electrones):

s = 1/2

Se satisfacen las relaciones de conmutación:

$$egin{array}{rll} \left[\hat{S}^2,\hat{S}_z
ight]&=&0& \left[\hat{S}_y,\hat{S}_z
ight]&=&i\hbar\hat{S}_x\ \left[\hat{S}_x,\hat{S}_y
ight]&=&i\hbar\hat{S}_z& \left[\hat{S}_z,\hat{S}_x
ight]&=&i\hbar\hat{S}_y \end{array}$$

Contenido Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos Hay dos funciones propias simultáneas de \hat{s}^2 y \hat{s}_z : $\hat{s}^2 \alpha(\omega) = \frac{1}{2}(\frac{1}{2}+1)\hbar^2 \alpha(\omega)$ $\hat{s}_z \alpha(\omega) = \frac{1}{2}\hbar \alpha(\omega)$ $\hat{s}^2 \beta(\omega) = \frac{1}{2}(\frac{1}{2}+1)\hbar^2 \beta(\omega)$ $\hat{s}_z \beta(\omega) = -\frac{1}{2}\hbar \beta(\omega)$

donde
$$m_s=-rac{1}{2},rac{1}{2}.$$

Las funciones de espín son ortonormales:

$$\int lpha^*(\omega) lpha(\omega) d\omega = \int eta^*(\omega) eta(\omega) d\omega = 1 \ \int lpha^*(\omega) eta(\omega) d\omega = \int eta^*(\omega) lpha(\omega) d\omega = 0$$

Las dos funciones de espín se representan por

$$egin{array}{ccc} lpha(\omega) &\equiv& \uparrow \ eta(\omega) &\equiv& \downarrow \end{array} \end{array}$$

Ecuación de Schrödinger

- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial

Términos espectroscópicos atómicos

Átomos polielectrónicos

El estado de un átomo hidrogenoide está determinado por

$$\{n,\ell,m_\ell,m_s\}, \hspace{1em} E_n$$

El estado de electrón en un átomo polielectrónico está determinado por

 $\{n,\ell,m_\ell,m_s\}$ + principio de exclusión, $E_{n,\ell}$

Estructura de capas: H: $1s^1$ He: $1s^2$ Li: $1s^22s^1$ Be: [He] $2s^2$ B: [He] $2s^22p^1$ C: [He] $2s^22p^2$ ··· Ne: [He] $2s^22p^6$ Na: [Ne] $3s^1$ Mg: [Ne] $3s^2$ ··· ·· ·· Ar: [Ne] $3s^23p^6$

Repaso m. cuántica/JHT

Contenido

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Superficies de energía

Oscilador armónico

Rotor rígido Espectroscopia rotacional-vibracional

(diatómicas)

potencial

Términos

atómicos

espectroscópicos

El estado de un átomo también puede caracterizarse por sus valores de momento angular con números cuánticos:

- S: momento angular de espín total
- J = L + S: momento angular total

Λ

tal que

V.com

$$egin{array}{rcl} J_z &=& L_z + S_z \ M_J &=& M_L + M_S \end{array}$$

Y como

$$M_l = -L, -L+1, \dots, L-1, L \ M_S = -S, -S+1, \dots, S-1, S$$

entonces:

 $|L-S| \geq J \leq L+S$

Acopamiento de Russell-Saunders

Contenido Términos espectroscópicos atómicos: Ecuación de Schrödinger Partículas idénticas $^{2S+1}L_J$ Partícula en una caja Multiplicidad: 2S + 1Oscilador armónico Rotor rígido Notación: 2S + 1S Espectroscopia rotacional-vibracional (diatómicas) singulete 0 Superficies de energía 0 2 potencial 1/22 doblete 3 triplete Términos espectroscópicos Ρ atómicos

Ejemplos:

H: $1s^1$. $L = \ell = 0$ y S = s = 1/2. Por lo tanto, J = 1/2 y 2S + 1 = 2. El término es ${}^2S_{1/2}$.

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

En general:

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos He: $1s^2$. Para ambos electrones $\ell = 0$. Por lo tanto L = 0. Además, $m_s = -1/2, 1/2$: y S = 0. Por lo tanto, J = 0 y 2S + 1 = 1. El término es 1S_0 . Se trata de una subcapa cerrada

Los electrones en subcapas cerradas se aparean para dar $L=0,\,S=0$ y J=0.

B: $1s^22s^22p^1$. Sólo se considera el electrón p. En este caso: $L = \ell = 1$ y S = s = 1/2, 2S + 1 = 2. Por lo tanto, $J = |L - S|, \dots, L + S$. Es decir, J = 1/2, 3/2. Posibilidades: ${}^2P_{1/2}$ o ${}^2P_{3/2}$

- Contenido Ecuación de Schrödinger Partículas idénticas Partícula en una caja Oscilador armónico Rotor rígido Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial
- C: $1s^22s^22p^2$. Sólo se consideran los dos electrones p.
 - Dado que $\ell=1$: $m_\ell=-1,0,1$.
 - La suma algebraica de m_ℓ conduce a L=2,1,0.
 - Los dos electrones pueden tener espín apareado o paralelo: S = 0, 1

2S+1 = 1,3

- Los posibles pares $oldsymbol{L}$, $oldsymbol{S}$ son:
 - L = 0, S = 0 L = 1, S = 0 L = 1, S = 0 L = 1, S = 1 L = 2, S = 0L = 2, S = 1
- Aunque J = 0, 1, 2, 3, el principio de Pauli elimina opciones.

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos

```
Notación: el estado de los dos electrones se denota por
```

```
\mid m_\ell(1)m_s(1)m_\ell(2)m_s(2) \left. 
ight
angle
```

```
Ejemplo: | 0 \uparrow 1 \downarrow \rangle.
```

Consideraciones:

- 1. El principio de exclusión elimina: $|1 \uparrow 1 \uparrow \rangle$.
- 2. Se debe evitar repeticiones como en

 $|1\uparrow 0\downarrow
angle$ y $0\downarrow 1\uparrow
angle$

Contonido	$ 1 \uparrow 1 \downarrow\rangle$	$\rightarrow M_L = 2,$	$M_S=0$	
Ecuación de Schrödinger	$ 1 \uparrow 0 \uparrow\rangle$	$\rightarrow M_I = 1.$	$M_{\rm S}=1$	
Partículas idénticas			14 0	
Partícula en una caja	$ 1\uparrow 0\downarrow\rangle$	$\rightarrow M_L = 1,$	$M_S = 0$	
Oscilador armónico	$ 1\uparrow -1\uparrow\rangle$	$\rightarrow M_L = 0,$	$M_s = 1$ donde:	
Rotor rígido Espectroscopia	$ 1\uparrow -1\downarrow\rangle$	$\rightarrow M_L = 0,$	$M_S = 0 M_L = m_\ell(1) + m_\ell(2)$	
(diatómicas)	11 + 0 1	$\rightarrow M_r = 1.$	$M_{s}=0$ $M_{S} = m_{s}(1) + m_{s}(2)$	
Superficies de energía potencial	$ 1\downarrow 0\downarrow\rangle$	$\rightarrow M_L = 1,$	$M_S = -1$	
Términos espectroscópicos	$ 1\downarrow -1\uparrow\rangle$	$\rightarrow M_L = 0,$	$M_S = 0$	
atomicos	$ 1\downarrow -1\downarrow\rangle$	$\rightarrow M_L = 0,$	$M_S = -1$	
	0 ↑ 0 ↓ >	$\rightarrow M_L = 0,$	$M_S=0$	
	$ 0\uparrow -1\uparrow\rangle$	$\rightarrow M_L = -1,$	$M_S = 1$	
	10 4 11		14	
	$ 0\downarrow -1\uparrow\rangle$	$\rightarrow M_L = -1,$	$M_S=0$	
	$ 0\downarrow -1\downarrow\rangle$	$\rightarrow M_L = -1,$	$M_S = -1$	
	$ -1\uparrow -1\downarrow\rangle$	$\rightarrow M_L = -2,$	$M_S = 0$	
Repaso m. cuántica/JHT			51	/ 56

	Otra re	epresenta	ación:				
Contenido Ecuación de Schrödinger Partículas idénticas Partícula en una caja	Table: Mice m_l and m_s (resultant va	<i>Table:</i> Microstates for two electrons in an np level: values of m_l and m_s (represented as paired or unpaired electrons) and resultant values of M_L , M_S and M_J .				Las combinaciones posibles de m_ℓ y m_s se llaman microestados.	
Oscilador armónico Rotor rígido	$m_l = +1$	$m_l = 0$	$m_l = -1$	M_L	M_S	M_J	
Espectroscopia rotacional-vibracional (diatómicas) Superficies de energía potencial Términos espectroscópicos atómicos		↑↓ ↑ ↓ ↓ ↓ ↑	↑↓ ↑ ↓ ↓ ↓ ↓	$\begin{array}{c} 2\\ 0\\ -2\\ 1\\ 0\\ -1\\ 1\\ 0\\ -1\\ 1\\ 1\\ 0\\ 0\\ -1\\ -1\\ -1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$2 \\ 0 \\ -2 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \\ -2 \\ 1 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1$	Se eliminan los pares L, S in- consistentes con los microes- tados. Sólo 3 pares L, S son posibles: L = 2, S = 0, J = 2 L = 0, S = 0, J = 0 L = 1, S = 1, J = 0,1,2
	Devile	a sa ta da a s	. E ve e elle le	- + -			

Por lo tanto, hay 5 posibles términos para C:

$$^{1}S_{0}, ^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}, ^{1}D_{2}$$

Repaso m. cuántica/JHT

52 / 56

Ecuación de Schrödinger

Partículas idénticas

Partícula en una caja

Oscilador armónico

Rotor rígido

Espectroscopia rotacional-vibracional (diatómicas)

Superficies de energía potencial

Términos espectroscópicos atómicos Las siguientes reglas empíricas basadas en espectros atómicos de líneas se aplican de manera consecutiva:

Reglas de Hund

Regla 1. Cuando más de un valor de S está permitido, se escoge el mayor valor posible.

Regla 2. Cuando más de un valor de *L* está permitido, se escoge el mayor valor posible.

Regla 3. Cuando más de un valor de J está permitido, se escoge el menor valor posible si la capa está menos que semillena y el mayor valor cuando está más que semillena.

(

Desde el punto de vista cuántico, cuando se lleva a un sistema de un estado singulete a uno triplete.

Hay contracción orbital.

- Las energías cinética y de repulsión electrón–electrón aumentan.
- La energía de atracción electrón-núcleo disminuye y contrarresta a las anteriores.

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Ejemplos:

En cada caso, deduce con las reglas de Hund del estado basal.

- B. Los términos son ${}^2P_{1/2}$ y ${}^2P_{3/2}$. El estado basal es ${}^2P_{1/2}$. *(regla 3)*
- C. Los términos son ${}^{1}S_{0}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}D_{2}$.
 - Por la regla 1: S = 1.
 - Por la regla 2: Sólo hay una alternativa, L=1.
 - Por la regla 3: J=0.

El estado basal es ${}^{3}P_{0}$.

- Ecuación de Schrödinger
- Partículas idénticas
- Partícula en una caja
- Oscilador armónico
- Rotor rígido
- Espectroscopia rotacional-vibracional (diatómicas)
- Superficies de energía potencial
- Términos espectroscópicos atómicos

Referencias

- 1. D. A. McQuarrie, J. D. Simon, Physical Chemistry. A Molecular Approach. University Science Books, 1997.
- 2. I. N. Levine, Quantum Chemistry, Sixth Edition. Pearson Education Inc., 2009.
- 3. R. Scherrer, Quantum Mechanics. An Accessible introduction. Pearson Addison Wesley, 2006.
- 4. C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, Second Edition. Pearson Education Limited, 2005.
- F. Rioux, "Hund's Multiplicity Rule Revisited", J. Chem. Educ. 84(2), 358–360 (2007).
- N. Shenkuan, "The Physical Basis of Hund's Rule", *J. Chem. Educ.* 69(10), 800–803 (1992).