Práctica 13. Preparación de disoluciones

PREGUNTA A RESPONDER AL FINAL DE LA SESIÓN.

En la preparación de disoluciones ¿Para cuáles expresiones de concentración es fundamental conocer el volumen final?

Cl	JESTIONARIO PREVIO
1.	¿Qué es una disolución?
2.	Una de las expresiones de concentración es la molaridad, ¿cómo se define y qué unidades tiene?
3.	¿Cuáles son las precauciones que debes tener al mezclar un ácido con agua?
4.	Para preparar disoluciones de concentración molar específica, ¿qué tipo de material de vidrio se recomienda usar y cómo se le nombra?
5.	¿Cuáles son las recomendaciones experimentales en la preparación de disoluciones cuando se utiliza este tipo de material de vidrio?
6.	Realiza los cálculos necesarios para preparar 100 mL de cada una de las disoluciones de la tabla 1 Considera que el NaOH, el H ₂ SO ₄ y el Cu(NO ₃) ₂ ·2.5 H ₂ O están al 100% de pureza y que el ácido tiene una densidad de 1.9 g/mL. Describe paso a paso cómo prepararías cada una de ellas, incluyendo el materia que utilizarías para prepararlas.
C	visolución 1

Disolución 2	
Disolución 3	
7. Investiga cuáles son los recipientes recomendados para almacenar cada	una de las disoluciones que vas a
preparar	

PROCEDIMIENTO EXPERIMENTAL

- 1. Se prepararán 50 mL de cada una de las disoluciones de la tabla 1.
- 2. Escribe en la tabla 1, la información de los reactivos que vas a utilizar para preparar las disoluciones. Esta información se encuentra en la etiqueta de cada uno de los reactivos.
- 3. Con la información de la tabla 1, calcula la cantidad de reactivo necesaria para preparar cada una de las disoluciones.
- 4. Elabora etiquetas para cada una de las disoluciones indicando los siguientes datos:

Nombre y concentración de la disolución Fecha de preparación Nombre de los responsables de la preparación

5. Coloca una etiqueta en un vaso de precipitados de 50 mL y otra en el recipiente donde se almacenará la disolución (asegúrate de que esté limpio y seco).

- 6. Recuerda las precauciones que debes tomar antes de mezclar un ácido con agua (de acuerdo con lo que investigaste en la tarea previa). Mide la cantidad de reactivo necesaria (de acuerdo con los cálculos que realizaste) y colócala en el vaso de precipitados de 50 mL.
- 7. Añade agua hasta aproximadamente la mitad volumen que deseas preparar.
- 8. Con ayuda de un embudo transfiere la disolución del vaso de precipitados a un matraz aforado del volumen a preparar, ten cuidado de dejar un espacio entre el tallo del embudo y las paredes del matraz para permitir la salida de aire.
- 9. Lava varias veces con agua destilada el vaso de precipitados que utilizaste, para asegurarte que todo el reactivo pase al matraz. Ten precaución de no utilizar mucha agua en cada lavado para no excederte del aforo (la línea en el matraz, que indica el volumen exacto de la disolución). Después de cada lavado homogeniza la mezcla dentro del matraz. Este procedimiento es muy importante porque en muchos casos el volumen y la temperatura final de la disolución pueden cambiar.
- 10. Antes de completar el volumen de la disolución hasta el aforo (aforar), asegúrate de que estén a temperatura ambiente, puedes utilizar un baño de agua o hielo para disminuir la temperatura.
- 11. Una vez que las disoluciones estén a temperatura ambiente afora cada una de ellas. Coloca el tapón y homogeniza la disolución colocando boca abajo el matraz con precaución.
- 12. Vierte cada disolución en el recipiente correspondiente y guárdalas en tu gaveta para utilizarlas en la siguiente práctica.

RESULTADOS Y CUESTIONARIO FINAL

Tabla 1

Disolución	Reactivo	Información sobre el reactivo	Volumen de disolución a preparar	Cantidad de reactivo (mol) para preparar la disolución	Cantidad de reactivo (g o mL) para preparar la disolución
NaOH 3 M	NaOH (sólido)	Pureza:			
H₂SO₄ 3 M	H ₂ SO ₄ (conc.)	Pureza: Densidad: Masa molar:			
Cu(NO ₃) ₂ 0.1 M	Cu(NO ₃) ₂ ·2.5 H ₂ O (sólido)	Pureza:			

1.		apta el método general recomendado en la práctica y describe cómo prepararías las siguientes oluciones, incluye los cálculos que se necesitan para saber las cantidades a utilizar.
	a)	200 mL de una disolución 0.1 M de NaOH comercial al 96 % de pureza.
	b)	250 mL de una disolución 0.5 M de Cu(NO ₃) ₂ partiendo de Cu(NO ₃) ₂ ·3H ₂ O comercial al 98 % de pureza.
	c)	1 L de una disolución 0.3 M de H ₂ SO ₄ , partiendo de H ₂ SO ₄ 2 M.
2.	En vol	la preparación de disoluciones ¿Para cuáles expresiones de concentración es fundamental conocer el umen final?
	CC	DNCLUSIONES:

Tratamiento de residuos:

No hay residuos ya que las disoluciones preparadas se utilizarán en la práctica No. 13.