PROBLEMAS DE DISOLUCIONES

PARTE I: Formas Físicas de Expresar las Concentraciones.

1.— Se disuelven 35 g de cloruro de magnesio (MgCl₂) en 150 g de agua dando una disolución cuya densidad es de 1,12 g/cm³.

Expresar la concentración de la disolución resultante en: a) % m/m, b) % m/V, c) g soluto/dm³ disolvente.

<u>R:</u> a) 18,92% m/m; b) 21,19% m/v; c) 233,33 g soluto/dm³ disolvente.

- 2.- Una disolución acuosa de nitrato de potasio (KNO $_3$) tiene una composición de 42 g /100 cm 3 de disolución (42 % m/v) y una densidad igual a 1,16 g/cm 3 . Calcular su composición expresada en: a) g/100 g disolvente
- b) g soluto/kg disolución

R: a) 56,76 g soluto/100 g disolvente; b) 362,07 g soluto/kg disolución.

- 3.- Con 30 g de nitrato de plata (AgNO₃) se desea preparar una disolución acuosa de esta sal al 22 % m/m (densidad= $1,08 \text{ g/cm}^3$). Calcular:
- a) el volumen de disolución que puede prepararse.
- b) la masa de disolvente necesaria.

<u>R:</u> a) 126,26 cm³; b) 106,36 g.

4.- Un producto de limpieza de uso doméstico que no daña el medio ambiente contiene 25 cm³ soluto/100 cm³ disolución (25 % v/v) de aceite de pino, 30 % v/v de ácido acético, 15 % v/v de aceite de palma y el resto de alcohol. ¿Cuántos cm³ habrá que tomar de cada sustancia para obtener 75 cm³ de disolución limpiadora?

<u>R:</u> 18,75 cm³; 22,5 cm³; 11,25 cm³; 22,5 cm³ respectivamente.

5.- La leche entera posee un 4 % v/v de crema, siendo la densidad de la crema de 0,865 g/cm³. Calcular la densidad de la leche descremada sabiendo que la masa de un litro de leche entera es de 1032 g. NOTA: Considerar volúmenes aditivos.

<u>R:</u> $1,039 \text{ g/cm}^3$.

6.- Una persona ha bebido 400 cm³ de pisco, bebida cuya graduación alcohólica es 30 °GL (30 g alcohol/100 cm³ de licor). Sabiendo que el 15 % del alcohol ingerido pasa al torrente sanguíneo; que el volumen de sangre de un adulto es de 5 L y que la concentración considerada tóxica es de 0,003 g alcohol/mL sangre, indicar si dicha persona está intoxicada.

R: Sí.

7.- El suero fisiológico es una disolución acuosa de cloruro de sodio (NaCl) de concentración 8,78 g NaCl/dm³ disolución. Calcular la masa de NaCl que ingresa en el organismo de un paciente al que se le administra suero durante 4 h con una velocidad de goteo de 1 gota por segundo (1 gota/s). NOTA: Considerar el volumen de una gota = 0,05 cm³.

R: 6,32 g NaCl.

8.- Se dispone de una disolución al 30% m/m de bromuro de litio (LiBr), ¿qué masa de agua habrá que agregar a 150 g de la disolución original para obtener una disolución al 10% m/m?

R: 300 g.

9.- Se desea diluir 200 g de una disolución acuosa de cloruro de sodio (NaCl) de concentración 40 mg soluto/cm³ disolución y densidad= 1,09 g/cm³ para obtener otra disolución de concentración 16 mg NaCl/ cm³ disolución y densidad=1,04 g/cm³. Calcular el volumen de agua necesario.

R: 277,06 cm³.

10.- Se tienen 250 cm³ de una disolución acuosa que contiene 30 g de soluto/ 100 cm³ de disolvente. (densidad= 1,15 g/cm³). Se le agrega agua hasta obtener un volumen de 1 dm³ de disolución (densidad= 1,08 g/cm³).

Calcular la concentración de la disolución diluída expresándola en % m/m.

R: 6% m/m.

- 11.- 400 cm³ de una disolución acuosa de sulfato de cinc (ZnSO₄) al 20% m/V y densidad 1,18 g/cm³ se mezclan con 200 cm³ de agua. Calcular la composición de la disolución resultante expresándola en:
- a) g soluto/kg sc; b) g soluto/dm³ disolvente.
- R: a) 119,05 g soluto/kg disolución; b) 135,14 g soluto/dm³ disolvente.
- 12.- ¿Qué volumen de disolución acuosa de concentración igual a 45 mg Cu²+/cm³ disolución se utilizará para preparar 250 cm³ de otra disolución acuosa de concentración 2 mg Cu²+/cm³ disolución?

R: 11,1 cm³.

13.- Calcular el volumen de disolución acuosa concentrada de ácido sulfúrico (H_2SO_4), 98 % m/m, densidad= 1,84 g/cm³ que se necesita para preparar 500 cm³ de disolución acuosa de H_2SO_4 al 20 % m/m, densidad= 1,14 g/cm³.

R: 63,22 cm³.

14.- Calcular el volumen de disolución acuosa de alcohol amílico al 95 % m/m (densidad= 0,80 g/cm³) que se necesita para preparar 125 cm³ de disolución al 30 % m/m (densidad= 0,95 g/cm³).

R: 46,9 cm³.

15.- Se agregan 20 g de bromuro de sodio (NaBr) a 1,2 dm³ de disolución acuosa de dicha sal al 15 % m/m y densidad= 1,12 g/cm³, obteniéndose una disolución de densidad = 1,16 g/cm³. Expresar la concentración de la nueva disolución en % m/V.

R: 18,85 % m/V.

16.- Con 300 g de una disolución acuosa de sulfato de potasio (K_2SO_4) que contiene 12 g soluto/100 cm³ disolvente y la cantidad de soluto necesaria, se desea preparar una disolución de concentración 30 g soluto/100 cm³ disolvente. Calcular la masa de sal a utilizar.

R: 51 g.

17.- Calcular la masa de cloruro de aluminio (AlCl₃) que será necesario agregar a 250 cm³ de una disolución acuosa que contiene 20 g de dicha sal/dm³ disolución (densidad= 1,05 g/cm³) para obtener otra cuya concentración sea de 80 g AlCl₃/dm³ disolución y su densidad= 1,07 g/cm³.

R: 15,81 g soluto.

18.- ¿Qué cantidad de agua hay que evaporar de una tonelada de potasa cáustica concentrada (disolución acuosa de hidróxido de potasio, KOH, al 46,9 % m/v, densidad= 1,34 g/cm³) para obtener otra disolución al 77,52 % m/v, densidad= 1,52 g/cm³?

Realizar los cálculos a partir de: a) los volúmenes, b) las masas.

Comparar los resultados ¿cuál de los dos es el correcto? ¿por qué?

<u>R:</u> a) 294,77 dm³ disolvente; b) 313,73 kg disolvente.

- 9.- Se mezclan 500 cm³ de disolución acuosa de ácido nítrico (HNO₃) al 62 % m/m (densidad= 1,38 g/cm³) con 500 cm³ de otra disolución acuosa de este ácido al 22 % m/m (densidad= 1,13 g/cm³). Hallar:
- a) el % m/m de la disolución resultante.
- b) el volumen de disolución obtenida si la densidad= 1,27 g/cm³.

<u>R:</u> a) 43,99 % m/m; b) 0,98 dm³.

- 20.- Hallar las masas de dos disoluciones acuosas de clorato(V) de potasio (KClO₃) al 32 % m/m y al 12 % m/m que deben mezclarse para preparar 500 g de disolución al 20 % m/m.
- R: 200 g de disolución al 32% m/m y 300 g de disolución al 12% m/m.
- 21.- Obtener una curva de solubilidad a partir de los siguientes datos:

Temperatura	Solubilidad	Temperatura	Solubilidad
°C	g soluto/100 g disolvente	°C	g soluto/100 g disolvente
0	13,9	50	83,5
10	21,2	60	135
20	31,6	70	167
30	45,3	80	203
40	61,4	90	245

Indicar:

- a) ¿Cuántos gramos de soluto se disuelven en 50 g de solvente a 25 °C?
- b) Se disuelven 100 g de soluto en 100 g de disolvente a 35 °C, ¿qué tipo de sistema se tiene? ¿Cuál es la masa de cada fase?
- c) A 70 °C una disolución tiene una concentración de 58,16 % m/m, ¿qué tipo de disolución es? Justificar.
- 22.- Se parte de 25 cm³ de disolución acuosa de densidad 1,15 g/cm³ y concentración 15 % m/m y se lleva a una temperatura donde la solubilidad es de 10 g soluto/100 g disolvente ¿Qué cantidad de soluto cristaliza y cuál es la masa de disolución final?
- R: 1,87 g de soluto; 26,88 g de disolución.
- 23.- Calcular: a) la cantidad de sulfato de calcio anhidro (CaSO₄) que cristaliza cuando 600 g de disolución acuosa saturada a 30 °C son calentados a 70 °C.
- b) la masa de agua que sería necesario agregar para mantener disuelto todo el soluto presente a 70 °C.

Datos: Solubilidad a 30 °C: 0,209 g soluto/ 100 g disolvente. 70 °C: 0,197 g soluto/ 100 g disolvente.

- <u>R:</u> a) 0,07 g de soluto; b) 35,76 g de solvente.
- 24.- Las estalactitas y las estalagmitas se producen por evaporación del agua de soluciones acuosas de hidrógeno carbonato de calcio (Ca(HCO₃)₂). Calcular el tiempo en que se formará una estalactita cónica de 2 cm de radio y 50 cm de altura sabiendo que la concentración de la disolución es de 2 g soluto/kg de disolución.

Volumen del cono: r²h/3

Densidad del Ca(HCO₃)₂= 2,71 g/cm³

Velocidad de evaporación del agua: 5 cm³ de agua por día.

R: 155 años.

- 25.- La solubilidad del monóxido de dinitrógeno (N_2O) o gas hilarante en agua a una atmósfera de presión es:
- * 0,171 g soluto/100 g de disolvente a 10 °C
- * 0,121 g soluto/100 g de disolvente a 20 °C.

Calcular la masa de N_20 que se desprende al calentar hasta 20 °C, 200 g de disolución saturada a 10 °C.

R: 0,1 g.

PARTE II: Formas Químicas de Expresar las Concentraciones.

1.- Calcular la masa de cloruro de hierro (III) hexahidratado (FeCl₃·6 H₂O), que se necesita para preparar 250 cm³ de una disolución acuosa que contenga 0,01 g de Cl⁻/cm³ (densidad= 1,01 g/cm³).

<u>R:</u> 6,35 g.

2.- El agua regia es una disolución que se utiliza en joyería para detectar la presencia de oro en aleaciones y se obtiene mezclando soluciones acuosas concentradas de ácido clorhídrico (HCl) y ácido nítrico (HNO₃) en una relación molar 3 a 1 respectivamente. Hallar el volumen de disolución acuosa de ácido nítrico al 66,97 % en masa (densidad= 1,4 g/cm³) que deberá añadirse a 1 dm³ de disolución acuosa de ácido clorhídrico al 40 % en masa (densidad= 1,2 g/cm³) para obtener agua regia.

R: 294,55 cm³.

- 3.- Calcular la molaridad, molalidad y normalidad de las siguientes soluciones acuosas:
 - a) ácido muriático (HCl comercial al 36% m/m, densidad= 1,18 g/cm³).
 - b) sosa caústica (NaOH comercial al 50,5% m/m, densidad= 1,53 g/cm³).
 - c) oleum (sulfúrico comercial al 98% m/m, densidad= 1,84 g/cm³).
- R: a) 11,64 M, 15,41 m, 11,64 N; b) 19,32 M, 25,51 m, 19,32 N; c) 18,40 M, 500,0 m, 36,80 N.

- 4.- Determinar la molaridad, molalidad y normalidad de las siguientes soluciones acuosas:
- a) 20 g de H₃PO₄/litro de sc, densidad= 1,12 g/cm³.
- b) 12 g de AlCl₃/kg de sc, densidad= 1,10 g/cm³.
- c) 18 g de AgNO₃/dm³ de sc, densidad= 1,15 g/cm₃.
- R: a) 0,20 M, 0,19 m, 0,61 N. b) 0,10 M, 0,09 m, 0,30 N. c) 0,11 M, 0,09 m, 0,11 N.
- 5.- Calcular las masas y los moles de soluto presentes en las siguientes disoluciones acuosas:
- a) 6,5 kg de disolución 0,5 M de ZnCl₂ (densidad= 1,20 g/cm³).
- b) 350 cm³ de disolución de KCl al 32% m/m (densidad= 1,17 g/cm³).
- c) 250 cm³ de disolución 3 N de H₃PO₄.
- d) 3,2 kg de disolución 0,2 m de Mg(OH)₂.
- e) 200 cm³ de disolución 5 m de (NH₄)₂SO₄ (densidad= 1,14 g/cm³).
- <u>R:</u> a) 369,56 g, 2,71 mol. b) 131,04 g, 1,76 mol. c) 24,50 g, 0,25 mol. d) 36,89 g, 0,63 mol. e) 90,65 g, 0,69 mol.
- 6.- ¿Qué volumen de disolución acuosa de carbonato de sodio (Na₂CO₃) 0,5 m (densidad= 1,09 g/cm³) deberá utilizarse en una reacción en la que se requieren 12,6 g de sal?
- R: 229,67 cm³.
- 7.- Calcular la molaridad de las soluciones obtenidas:
- a) diluyendo 50 cm³ de disolución acuosa 3 M de NaOH a 1 dm³.
- b) diluyendo 100 g de disolución acuosa 2 m de HNO₃ a 500 cm³.
- <u>R:</u> a) 0,15 M. b) 0,36 M.
- 8.- Una disolución acuosa de ácido sulfúrico concentrado al 88.43% m/m y densidad= 1,805 g/cm³ se diluye a un volumen 5 veces mayor. Calcular el volumen de ácido diluído que se necesitará para preparar 5 dm³ de disolución acuosa del ácido 1 N.
- R: 769,23 cm³.

9.- A 1,5 dm 3 de disolución acuosa de nitrato (V) de calcio (Ca(NO₃)₂)2,5 M y densidad= 1,2 g/cm 3 se le agregan 10 g de soluto. Calcular la normalidad de la disolución final sabiendo que su densidad= 1.28 g/cm 3 .

R: 5,39 N.

10.- Se mezclan 4,5 kg de disolución acuosa 0,2 M de Cd(NO₃)₂ (densidad= 1,08 g/cm³) con 350 cm³ de disolución acuosa de la misma sal al28% m/m (densidad= 1,3 g/cm³). Expresar la concentración de la disolución resultante en normalidad y molalidad sabiendo que su densidad es 1,16 g/cm³.

R: 0,64 N; 0,30 m.

11.- ¿Qué volúmenes deberán mezclarse de dos soluciones acuosas de ácido nítrico cuyas concentraciones respectivas son N/2 y N/10 para obtener 2 dm³ de disolución de concentración N/5?

NOTA: Considerar volúmenes aditivos.

<u>R:</u> $0.5 \text{ dm}^3 \text{ de sc N/2 y } 1.5 \text{ dm}^3 \text{ de sc N/10}.$

Problema Opcional:

12.- Se mezclan 125 cm³ de disolución acuosa 0,10 M de hidróxido de potasio (KOH), 150 cm³ de disolución acuosa 0,2 N de hidróxido de bario (Ba(OH)₂) y 500 cm³ de disolución acuosa 0,15 M de clorato (V) de hidrógeno (HClO₃).

Sin usar masas atómicas relativas calcular:

- a) Número de equivalentes de ácido o base que deben agregarse a la disolución asi obtenida, para neutralizarla totalmente.
- b) Número de equivalentes de sal presentes en el sistema antes y después de efectuar la neutralización indicada en el punto a).

<u>R:</u> a) 0,0325 Equivalentes. b) 0,0425 Eq. iniciales. 0,0750 Eq.finales.